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　背景・目的�
　位相的弦理論における代表的な２つの手法としてミラー対
称性の理論と位相的頂点理論があるが、両者には長所と短
所がある。本研究は、超弦理論の研究から生まれたこの２つ
の手法の幾何学的意味づけをはっきりさせることによって、両
者の関係を明快に把握することを目標とする。そしてその応
用として、両者の長所を融合した汎用性のある理論の構築
を目指す。�
�
　内容・方法�
　ミラー対称性の理論は初めて発見されてから１０年以上の
歴史があり、その間の研究によってかなり広いクラスのケーラー
多様体に対して適用できるようになったが、主としてその手法
が強力なのは種数が０のリーマン面、つまり２次元球面から
ケーラー多様体への正則写像を扱うときである。この場合には、
正則写像の次数について足し上げた結果を一気に求めら
れるが、リーマン面の種数が０より大きい場合は煩雑な作業を
要求される。一方位相的頂点の方法では、種数について足
しあげた結果が一気に得られるが写像の次数については複
雑な作業を要求される。ここで、この二つの手法の幾何学的
意味を追求し、両手法が適用可能な例を詳細に見る事で、
両者の関係を明らかにし、融合を図る。�
�
　結果・成果�
　今年度行った研究では、ミラー対称性の手法の深化と幾
何学的意味の追求において大きな進展があった。ミラー対称
性の手法は、もともとカラビ－ヤウ多様体と呼ばれるある種の
平坦性を持つケーラー多様体に対して発見されたのだが、
本研究代表者らによる研究により、より難しいと思われていた、
一般型と呼ばれる負に曲がったケーラー多様体についても
適用できるようになった。�
　ミラー対称性においては、位相的弦理論の相関関数を超
幾何級数を出発点として、その級数にミラー変換と呼ばれる
変数変換を施すことにより求めるが、一般型のケーラー多様
体の場合は、超幾何級数にバーコフ分解と呼ばれる操作を
施して得られる級数に、一般ミラー変換というより複雑な変数
変換を行う必要がある。これらの操作は、一般にはかなり複
雑である。�
　本研究代表者はＢｒｉａｎ Ｆｏｒｂｅｓ氏とともに、上記の手法を
Ｏ（１）＋Ｏ（－３）－＞Ｐ１という一般型のケーラー多様体の特
徴を備えた複素３次元開カラビ－ヤウ多様体に対して適用す
ることに成功した。また、この成果をさらに推し進め、Ｏ（１）＋
Ｏ（－３）－＞Ｐ１に対する位相的弦理論が、Ｏ（１）＋Ｏ（－１）
＋Ｏ（－１）＋Ｏ（－１）－＞Ｐ１という複素５次元開カラビ－ヤウ
多様体に対する位相的弦理論と本質的に同じになることを

発見し、計算過程を大幅に簡略化した。その結果、種数０の
場合と種数１の場合の結果の閉じた表式を求めることに成
功した。�
　また、一般ミラー変換に対する幾何学的考察においても大
きな進展があった。一般ミラー変換とは、正則写像のモジュラ
イ空間の２つの異なるコンパクト化の間を橋渡しする操作で
あると予想されるが、実は超幾何級数をバーコフ分解して得
られる級数を、一方のコンパクト化であるトーリックコンパクト化
の元での位相的弦理論の相関関数と解釈することにより、幾
何学的解釈が明快になるのである。この着想はミラー対称性
の手法の理論的側面について大きな進展を与えることが期
待できる。�
�
　今後の展望�
　今年度は、ミラー対称性の手法の応用的側面と理論的側
面の深化において成果が得られた。この進展により、高い種
数の相関関数におけるミラー対称性の理論的側面の研究に
大きな進展が期待できる。高い種数の場合のミラー対称性の
幾何学的理論を完成させることによって、現在のところ幾何
学的理論がある程度はっきりしている位相的頂点理論との
比較が効率的に行われ、本研究の最終目標である両者の融
合も具体化するであろう。�

ミラー対称性と位相的頂点
理論の統一

秦泉寺 雅夫［北海道大学大学院理学院数学専攻／講師］

―　　―�１３�


