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近年 MRI の技術が確立し、生体の内部の様子が画像として表示できる様になった。MRI は体内の各部位

における水素密度を測定する技術である。しかし初期の癌ではその水素密度は正常な部位と全く変わり

なく、ただその堅さ（即ちずれ弾性率）だけが異なる事が知られている。つまり MRI をもってしても

初期癌の発見は理論的に難しい。しかしこの堅さの相違は大きいので、もしも医師が体内にまでその手

を伸ばし触診するような仮想的な触診が可能になれば、初期癌を発見することが大変容易になる。この

仮想的触診を、実現する可能性が高い有力な方法として MRE 法(magnetic resonance elastography)があ

る。これは 1995 年頃に R. Mathupillai とその研究協力者達により提唱された方法で、「身体表面に振

動を与えて、その振動が波（弾性波）として伝わる様子を MRI 装置によって観測すれば、堅さがわか

るのではないか」という考え方に基づく 

MRE 法による初期癌診断法は、X 線被爆の危険がないより安全で確実な方法となり得る可能性を持

っているので、世界各国の研究者が注目して研究している。外国では例えば、アメリカの A. Manduca
教授達の研究グループ、ドイツの I. Sack 教授達の研究グループなどがある。日本では、研究分担者

の菅幹生助教授を中心に研究が開始された。各国における MRE 法による初期癌診断法は、いずれの

研究もまだ初期癌のファントムを使った MRE 法による検査・診断法の研究が始まった段階であり、

いろいろな研究結果が報告されているが、理論的研究に裏打ちされた信頼性の高い研究結果が無いの

が現状である。その最大の理由は、次の問題点にある。即ち、(i)初期癌のファントム同定逆問題の

MRE 法による計測データの数値実験による忠実な再現が行われてこなかったこと、(ii)この逆問題を

解く有効な数学的方法が定まらないことにある。 

本研究では、上記の二つの問題点の解決を目指すことを目標とした。問題点(i)は、京都大学の藤原宏

志助手の協力を得て、数値解析と数値実験を行い、菅幹生が初期癌のファントムに対して MRE 法で

計測したデータを、数値実験で忠実に再現した。 

問題点(ii)の解決方法の第一段階として、ロバストな（即ち誤差に強い）数値微分法の開発とその適用

を試みた。数値微分法とは、m 回連続微分可能な未知関数の有限個の点における近似値（以下観測デ

ータとよぶ）が与えられたとき、それから未知関数を近似的に復元したり、その未知関数が m＋１回

微分可能でない点を見つけたりする逆問題に対する解法のことである。本研究で開発した数値微分法

は、Tikhonov の正則化による最小二乗法に基づく、簡便で高精度・ロバストな方法である。その詳

細については、論文[1]と論文 draft[2]を参照されたい。 

この数値微分法を次のように利用すると、人体の部位の仮想的触診が可能である。今、観測データと



して、MRE 法で計測した周波数 k の横波の変位ベクトルの一成分 u の有限個の点（以下計測点 と

よぶ）における値をとる。数値微分法により u とそのラプラス作用素Δによる微分Δu を近似的に求

め、u が満たす Helmholtz 型方程式：(ρk２＋μΔ)u=0 を使って、弾性係数の一つせん断率（＊）

μ=ρk２ u/(Δu)（堅さを表す物理定数）を近似的に求めることが可能である。但し、この議論は弾

性係数が均質な所でのみ可能である。弾性係数が不連続となる初期癌のファントムの境界の同定は、

Δu の不連続点としてとらえることが出来るので、数値微分法による不連続点の同定法を使って同定

する。従って、まず初期癌のファントムの境界を同定し、次にこの境界から離れたところで公式(*)
を用いてμを求める。この値が大きければ大きいほど硬いことを表しているので、このようにして人

体の部位の硬さが分かる。 

次にこの方法の有効性を数値実験により検証する。実際の数値実験を行うに当たっては、藤原宏志に

よる菅幹生の実験結果の数値的再現で得られた横波の変位ベクトルの一成分関数 u を, MRE 法で計

測される u の代わりに用い、この u の有限個の計測点における値に誤差をランダムに加えて観測デー

タとする。観測データから数値微分法により u を近似的に求め、Δu の値が相対的に十分大きくなる

計測点を求める。これがファントムの境界を近似的に与えるはずである。次にファントムの内部で数

値微分法によりΔu を近似的に求め、公式（＊）を用いればせん断率μ（以下逆問題の解とよぶ）が

近似的に求まり、これが周辺の部位に比べて大きければ、確かに癌のファントムと診断できる。この

癌のファントム同定逆問題に対して数値微分法の有効性を実証するには、観測データの誤差が 2 パー

セントのとき、逆問題の解の誤差が 10 パーセント以内である必要がある（以下この要請を誤差拡大

抑制とよぶ）。癌のファントム同定逆問題ではないが、簡単な幾つかの数値例題に対して本研究開発

の数値微分法が、誤差拡大抑制であることを確認した。 

ところで、菅幹生の実験で得られるせん断係数は、周波数依存性を持つ。これは初期癌ファントム同

定逆問題の基礎方程式が、非圧縮定常弾性波動方程式ではなく、何らかの粘弾性を有する方程式と思

われる。そこで非圧縮定常粘弾性波動方程式を基礎方程式にとり、菅幹生の実験結果の前よりもより

忠実な数値的再現とその数値データを観測データとしてせん断率と粘性率を求める方法について研

究した。得られた研究成果は、次の通りである。基礎方程式を物質係数が非均質な２次元非圧縮定常

弾性波動方程式或いは非圧縮定常粘弾性波動方程式とした場合にいわゆる oscillating-decaying 
solution、Runge の近似定理、楕円型方程式の Cauchy 問題の解法、双曲型方程式の初期値問題の解

法を用いて、せん断率或いはせん断率と粘性率を求める方法を与えた。（詳細については論文[3]を参

照されたい。） 前述の物質係数が区分的に均質な場合の問題点(ii)に対する第一段階の解決方法に比

べると、はるかに複雑な解決方法になってしまっているが、数学的には厳密な解決方法を与えている。

また藤原宏志の協力を得て、基礎方程式を区分的に均質な２次元非圧縮定常粘弾性波動方程式とした

場合に、菅幹生の実験結果を前よりもより忠実に再現した。そして均質な所で有効な（＊）と類似な

公式よりせん断率と粘性率を求め、せん断率に関しては誤差拡大抑制も満足されることを示した。そ

のより詳細[4]は、藤原宏のホームページよりダウンロードできる。 
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Abstract

A regularized optimization problem for computing numerical differentiation for the
second order derivative of functions with two variables from noisy values at the
scattered points is discussed in this article. The authors give the proof of the exis-
tence and uniqueness of the solution to this problem, the construction scheme of the
solution is based on bi-harmonic Green function and the convergence estimate of
the regularized solution to the exact solution for the problem under a simple choice
of regularization parameter. The efficiency of the reconstruction scheme is shown
by some numerical examples.
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1 Introduction

Numerical differentiation is a problem to determine the derivatives of an un-
known function from the given noisy values of the unknown function at the
scattered points. Hereafter, for simplicity, we abbreviate this determination
of derivatives by numerical differentiation from noisy scattered data.It arises
from many scientific researches and applications, but it is an ill-posed problem,
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which means, the small errors in the measurement of the function may lead to
large errors in its computed derivatives ([7], [9], [14]). There have been many
approaches proposed ( [8], [9],[12]) for treating the numerical differentiation
problem.

A. G. Ramm proposed an approach for getting stable numerical differentiation
by using finite-difference methods in 1968[12]. Recently A. G. Ramm and A.
B. Smirnova gave the error estimate and presented some numerical examples
for this approach [13]. Their detailed study was given basically for functions
with one variable. The error estimate of this method is precise and optimal.
This numerical differentiation based on the finite-difference methods only gives
piecewise constant functions which lacks the smoothness.

On the other hand, M. Hanke and O. Scherzer proposed another approach
to the problem based on discrepancy principle for the least square method
combined with Tikhonov regularization finding the minimizer in natural cubic
splines [9]. They only considered it for functions with one variable. Y. B. Wang
et al. adopted the idea given in [9] to treat irregular grid and gave a simple
way to choose the regularization parameter. The byproduct of this method is
that it can identify the discontinuity of an unknown function from the noisy
values of the unknown function at the scattered points. This identification
of the discontinuity was used to find discontinuous solutions of Abel integral
equations [2] and edge detection of image [10]. The numerical results showed
that this method was quite efficient.

The higher order and two dimensional numerical differentiation along the line
of this method were given in [15] and [17], respectively. For the two dimensional
case, the new ingredient was that the variational problem for the regularized
minimization problem is solved using the Green function for the Laplacian
with Dirichlet boundary condition and a scheme for computing the first order
derivative was given in [17]. The numerical example showed that this method
was efficient. But in many applications, it is necessary to compute higher order
derivatives, for example, in the plate bending problem, the bending moments
are obtained from the second derivatives of the vertical displacement of the
plate [1], so in this paper we will give a numerical differentiation of the second
order derivatives from noisy scattered data. The error estimate for our method
has the form and order similar to that of [13] in terms of the noise level of
the data and size of the irregular grid. But the order in terms of the size of
irregular grid is slightly worse than that of [13]. Comparing these two error
estimates of [13] and ours, we have to be aware of the difference that the
former is for functions with one variable and the latter is for functions with
two variables.

The paper is organized as follows: in section 2, we describe the problem in
detail and prove the existence and uniqueness of the solution; in section 3 we
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give the convergence estimate of the regularized solution to the exact solution
for the problem by error estimate; the numerical examples are given in section
4; in section 5, we discuss the efficiency of this method by analyzing the results
of the numerical examples in section 4; we give the algorithm for computing
the Green function in Appendix.

2 Problem and some results

Suppose that Ω ⊂ R2 is a bounded domain with C2 boundary and % = %(x)
is a function defined in Ω. Let N be a natural number and {xi}N

i=1 be a group
of points in Ω. We assume that Ω is divided into N parts {Ωi}N

i=1, and there
is only one point of {xi}N

i=1 in each part. For simplicity we also assume that
the areas |Ωi| of all Ωi(1 ≤ i ≤ N) are same. We denote by di the diameter of
Ωi and let d = max{di}.

We will discuss the following problem:

Suppose that we know the approximate value %̃i of %(x) at point xi, i.e.

|%̃i − %(xi)| ≤ δ, i = 1, 2, · · · , N, (2.1)

where δ > 0 is a given constant called the error level.

We want to find a function f∗(x) which approximates function %(x) such that
‖f∗ − %‖H2(Ω) is small and

lim
d→0,δ→0

‖f∗ − %‖H2(Ω) = 0.

Assuming that there are two functions φ(x) ∈ H7/2(∂Ω) and ϕ(x) ∈ H3/2(∂Ω)
satisfying ‖φ(x) − %(x)‖H7/2(∂Ω) ≤ δ and ‖ϕ(x) − 4%(x)‖H3/2(∂Ω) ≤ δ, we
treat this problem as the following optimization problem by using Tikhonov
regularization method.

Problem 2.1 Define a cost functional Φ(f):

Φ(f) =
1

N

N∑

j=1

(f(xj)− %̃j)
2 + α‖42f‖2

L2(Ω), f ∈ H

where H = {f |f ∈ H4(Ω), f |∂Ω = φ,4f |∂Ω = ϕ}, and α > 0 is a reg-
ularization parameter. Then, the problem is then to find f∗ ∈ H such that
Φ(f∗) ≤ Φ(f) for every f ∈ H.

Then we will prove the existence and uniqueness of the minimizer of Problem
2.1.
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Theorem 2.2 Suppose that f∗ ∈ H is the solution of the following variational
problem:

∫

Ω
42f42hdx = − 1

αN

N∑

j=1

(f(xj)− %̃j)h(xj) (2.2)

for all h ∈ Ĥ = {h|h ∈ H4(Ω), h|∂Ω = 4h|∂Ω = 0}. Then f∗ is the minimizer
of Problem 2.1. Moreover, the minimizer of Problem 2.1 is unique.

Remark 2.3 We will prove the existence of a solution of (2.2) later in The-
orem 2.4.

Proof of Theorem 2.2. For any f ∈ H, let h = f − f∗, then h |∂Ω= 0 and
4h |∂Ω= 0. It is easy to have the following equations:

Φ(f)− Φ(f∗) =
1

N

N∑

j=1

(f(xj)− f∗(xj))(f(xj) + f∗(xj)− 2%̃j)

+α
∫

Ω

[
(42f)2 − (42f∗)2

]
dx (2.3)

= I1 + αI2

and

I1 =
1

N

N∑

j=1

2(f∗(xj)− %̃j)h(xj) + h2(xj) .

By the definition of f∗, we have

I2 =
∫

Ω
[(42f)2 − (42f∗)2]dx = ‖42h‖2

L2(Ω) + 2
∫

Ω
42h · 42f∗dx

= ‖42h‖2
L2(Ω) −

2

αN

N∑

j=1

(f∗(xj)− %̃j)h(xj) .

Substituting the equations I1 and I2 into (2.3) gives

Φ(f)− Φ(f∗) =
1

N

N∑

j=1

h2(xj) + α‖42f −42f∗‖2
L2(Ω) ≥ 0 .

Thus, f∗ is a minimizer of Problem 2.1.

If there is another f ∗ ∈ H minimizing Problem 2.1, denote g = f ∗ − f∗, then
function g satisfies:

∫
Ω (42g)2dx = 0 and g|∂Ω = 0,4g|∂Ω = 0. Hence, g(x) ≡ 0

for x ∈ Ω. So f ∗ = f∗. Therefore, the uniqueness of the minimizer of Problem
2.1 has been proven. 2

To solve numerical differentiation problem, it is necessary to provide a scheme
for constructing f∗. For that, by an a priori argument using Green function of
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bi-harmonic operator, we construct f∗. It will be shown as a theorem that the
constructed f∗ is the solution of (2.2).

Let’s recall the definition of the bi-harmonic Green function before going into
the construction. Function G(x, y) with fixed y ∈ Ω is called the bi-harmonic
Green function if it satisfies

42
xG(x, y) = δ(x− y) in Ω

G|∂Ω = 0, 4xG|∂Ω = 0 .

We can obtain G(x, y) by solving

4xF (x, y) = δ(x− y) in Ω

F (x, y)|∂Ω = 0

and

4xG(x, y) = F (x, y) in Ω

G(x, y)|∂Ω = 0 .

We denote 41 as the Laplacian operator for the first argument, and 42 as
the Laplacian operator for the second argument. Since G(x, y) = G(y, x) and
F (x, y) = F (y, x) for x, y ∈ Ω, we have

42G(y, x) = 41G(x, y) = F (x, y) = F (y, x) = 41G(y, x) . (2.4)

Now we will propose a scheme to obtain the solution of the Eq. (2.2). Taking
h = G(x, y) in (2.2) and using the definition of Green function, we obtain

− 1
N

∑N
j=1 (f∗(xj)− %̃j)G(xj, y) =

∫

Ω
α42f∗(x) · 42

xG(x, y)dx

= α42f∗(y).

Multiply the two sides of the above equation by G(x, y) and integrate it on Ω,
we obtain by integrating by parts
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− 1

N

N∑

j=1

(f∗(xj)− %̃j)
∫

Ω
G(xj, x)G(x, y)dx

= α
∫

Ω
42f∗(x) ·G(x, y)dx

= α
∫

∂Ω
(

∂

∂ν
4f∗(x) ·G(x, y)− ∂

∂ν
G(x, y) · 4f∗(x))ds(x)

+α
∫

Ω
4f∗(x) · 4xG(x, y)dx

=−α
∫

∂Ω

∂

∂ν
G(x, y) · ϕ(x)ds(x)− α

∫

∂Ω

∂

∂ν
4xG(x, y) · φ(x)ds(x)

+αf∗(y) ,

where ν is the unit normal of ∂Ω directed outside Ω. Rewrite the above equa-
tion in the form:

αf∗(x) +
1

N

N∑

j=1

(f∗(xj)− %̃j)
∫

Ω
G(xj, y)G(y, x)dy (2.5)

= α
∫

∂Ω

∂

∂ν
G(y, x) · ϕ(y)ds(y) + α

∫

∂Ω

∂

∂ν
4yG(y, x) · φ(y)ds(y) .

By defining

aj(x) =
∫

Ω
G(xj, y)G(y, x)dy, (2.6)

b(x) =
∫

∂Ω

∂

∂ν
4yG(y, x) · φ(y)ds(y) +

∫

∂Ω

∂

∂ν
G(y, x) · ϕ(y)ds(y) (2.7)

and

cj = − 1

αN
(f∗(xj)− %̃j) (2.8)

(2.5) becomes

f∗(x) =
N∑

j=1

cjaj(x) + b(x) . (2.9)

Now the problem of constructing f∗ reduces to computing the coefficients cj

from %̃j, ϕ(x) and φ(x). From (2.8) and (2.9) we obtain

cj = − 1

αN
(f∗(xj)− %̃j) = − 1

αN
(

N∑

k=1

ak(x
j)ck + b(xj)− %̃j) . (2.10)

Let

A =




αN + a1(x
1) a2(x

1) a3(x
1) · · · aN(x1)

a1(x
2) αN + a2(x

2) a3(x
2) · · · aN(x2)

· · · · · · · · · · · · · · ·
a1(x

N) a2(x
N) a3(x

N) · · · αN + aN(xN)



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and

c =




c1

c2

· · ·
cN




,b =




ρ̃1 − b(x1)

ρ̃2 − b(x2)

· · ·
ρ̃N − b(xN) .




,

Then (2.10) becomes the linear equations Ac = b. Solving this equations, we
will obtain coefficients cj, which finishes the construction of f∗.

Theorem 2.4 Suppose function f∗ =
∑N

j=1 cjaj(x) + b(x) where aj(x) and
b(x) are defined in (2.6) and (2.7), {cj}N

j=1 is the solution of linear system
(2.10), then f∗ is the solution of (2.2).

Proof. For every x ∈ ∂Ω, from the definition of Green function, we know that
G(x, y) = G(y, x) = 0 for y ∈ Ω. So

aj(x) =
∫

Ω
G(xj, y) ·G(y, x)dy = 0.

Assume that φ̂ ∈ H2(Ω) is an extension of φ to Ω and ϕ̂ ∈ H2(Ω) is an
extension of ϕ over Ω, then integrating by parts yields

b(x) = φ(x) (x ∈ ∂Ω).

Thus we have f∗(x)|∂Ω = φ(x).

We also have

4aj(x) =
∫

Ω
G(xj, y)4xG(x, y)dy = 0 (x ∈ ∂Ω)

Since

b(x) =
∫

Ω
φ̂(y)42

yG(y, x)dy −
∫

Ω
4yG(y, x)4φ̂(y)dy

+
∫

Ω
ϕ̂(y)4yG(y, x)dy −

∫

Ω
G(y, x)4ϕ̂(y)dy (x ∈ ∂Ω),

then we will have using the definition of F (x, y) and (2.4),

4b(x) =4φ̂(x)−
∫

Ω
4x(4yG(y, x))4φ̂(y)dy

+
∫

Ω
ϕ̂(y)4x(4yG(y, x))dy −

∫

Ω
4xG(x, y)4ϕ̂(y)dy

=4φ̂(x)−
∫

Ω
42

xG(x, y)4φ̂(y)dy +
∫

Ω
ϕ̂(y)42

xG(x, y))dy

= ϕ(x) (x ∈ ∂Ω).
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Thus we have 4f∗(x)|∂Ω = ϕ(x).

Moreover, from the definition of aj(x) and b(x), we know that for every x ∈ Ω

42aj(x) =
∫

Ω
G(xj, y)42

xG(x, y)dy = G(xj, x) (2.11)

and

42b(x) = 4ϕ̂(x)−
∫

Ω
42

xG(x, y)4ϕ̂(y)dy = 4ϕ̂(x)−4ϕ̂(x) = 0. (2.12)

Since G(xj, x) ∈ L2(Ω) , so we have42f∗(x) ∈ L2(Ω). From the well-posedness
of the Possion equation with inhomogeneous Dirichlet boundary condition, we
know f∗ ∈ H4(Ω). Furthermore f∗ ∈ H.

For any h ∈ Ĥ, we have

∫

Ω
42f∗42hdx =

∫

Ω

N∑

j=1

cjG(xj, x)42h(x)dx

=
N∑

j=1

cj

(∫

Ω
4G(xj, x)4h(x)dx−

∫

∂Ω
4h(x)

∂G(xj, x)

∂ν
ds(x)

+
∫

∂Ω
G(xj, x)

∂4h(x)

∂ν
ds(x)

)

=
N∑

j=1

cj

(∫

Ω
42G(xj, x)h(x)dx−

∫

∂Ω
h(x)

∂4G(xj, x)

∂ν
ds(x)

+
∫

∂Ω
4G(xj, x)

∂h(x)

∂ν
ds(x)

)

=
N∑

j=1

cjh(xj) = − 1

αN

N∑

j=1

(f∗(xj)− %̃j)h(xj).

So f∗ is the solution of (2.2). This completes the proof. 2

The solution of the linear equations exists and is unique, because if we assume
%̃i = 0, i = 1, · · · , N , and φ(x) = ϕ(x) = 0, then we know that there is only
one minimizer of Problem 2.1 , which is f∗(x) ≡ 0, x ∈ Ω. It is obvious c = 0
is a solution of Ac = 0 and if there is another ĉ satisfying Aĉ = 0, then we
will have a function f̂ 6= 0 which is also a minimizer of Problem 2.1. This is a
contradiction so the homogenous linear equations only has a trivial solution.
Thus the solution of the linear equations exists and is unique.
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3 Error estimate

In this section we will give a convergence estimate for our proposed solution
under a priori choice of the regularization parameter. The proof will use the
following lemma.

Lemma 3.1 Let E be a bounded domain in Rn with Lipschitz boundary ∂E,
u ∈ W 1,p(E), and suppose that n < p ≤ ∞ , then

|u(x)− u(y)| ≤ K|x− y|1−n
p ‖u‖1,p,Ω

where K is independent of u.

This lemma can be seen in page 27 of [6].

According to the result of [3], we choose the regularization parameter α =
δ2. Such choice has been proven quite effective (see [16]). We give the error
estimate in the following theorem:

Theorem 3.2 Suppose f∗ is the minimizer of Problem 2.1 and % ∈ H4(Ω).
Let e = f∗ − % and choose α = δ2, then we have the following error estimate

‖4e‖L2(Ω) ≤ L1 d
1
2 + L2δ

1
2 , ‖e‖L2(Ω) ≤ L3d + L4δ

‖∇e‖L2(Ω) ≤ L5d
3
4 + L6δ

1
2 , ‖∇4e‖L2(Ω) ≤ L7d

1
4 + L8δ

1
4

where Li are constants which depend on Ω, ‖φ‖H7/2(∂Ω), ‖ϕ‖H3/2(∂Ω) and ‖42%‖L2(Ω).

Proof. For simplicity, we use the abbreviation ‖·‖L2 = ‖·‖L2(Ω). Since δ2‖42f∗‖2
L2 ≤

Φ(f∗) ≤ Φ(%) ≤ δ2+δ2‖42%‖2
L2 , it is easy to see that ‖42e‖L2 ≤ 1+2‖42%‖L2 .

Also, from the well-posedness of the boundary value problem




42e = g in Ω

e = k, 4e = ` on ∂Ω
(3.1)

with given g ∈ L2(Ω), k ∈ H7/2(∂Ω), ` ∈ H3/2(∂Ω) and the continuity of the
trace operator, there are constants C1 and C2 such that ‖ ∂

∂ν
e‖L2(∂Ω) ≤ C1 and

‖ ∂
∂ν
4e‖L2(∂Ω) ≤ C2. Hereafter, Ci’s are general constants which may depend

on Ω, ‖φ‖H7/2(∂Ω), ‖ϕ‖H3/2(∂Ω) and ‖42%‖L2 .

So, by ‖e‖L2 ≤ δ, ‖4e‖L2 ≤ δ,
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‖4e‖2
L2 =

∫

Ω
|4e|2dx

=
∫

∂Ω
4e · ∂

∂ν
edS −

∫

∂Ω
e · ∂

∂ν
4edS +

∫

Ω
42e · edx

≤‖e‖L2 · ‖42e‖L2 + C1δ + C2δ.

Here, note that the general constants C1, C2 can be different in each estimate.
We rewrite ‖e‖L2 as

‖e‖2
L2 =

∫

Ω
e2(x)dx =

N∑

i=1

∫

Ωi

e2(x)dx

=
N∑

i=1

∫

Ωi

e(x)(e(x)− e(xi))dx +
N∑

i=1

∫

Ωi

e(xi)(e(x)− e(xi))dx

+
N∑

i=1

∫

Ωi

e2(xi)dx

= I3 + I4 + I5.

Now we estimate I3, I4, and I5.

I3 =
N∑

i=1

∫

Ωi

e(x)(e(x)− e(xi))dx ≤
N∑

i=1

∫

Ωi

|e(x)||(e(x)− e(xi))|dx

≤
N∑

i=1

∫

Ωi

C1|x− xi|1−n
p ‖e‖1,p|e(x)|dx ≤ d1−n

p C1‖e‖1,p

∫

Ω
|e(x)|dx

≤ d1−n
p C1‖e‖1,p‖e‖L2(|Ω|) 1

2

where |Ω| is the area of Ω. The second inequality is obtained from Lemma 3.1
with n = 2. We may set p = 4, then

I3 ≤ d
1
2 C1(|Ω|) 1

2‖e‖1,4‖e‖L2 .

From the imbedding theorem of Soblev spaces we know that W 2,2(Ω) →
W 1,4(Ω), which means, there is a constant C1 independent of e satisfying
‖e‖1,4 ≤ C1‖e‖2,2. By the well-posedness of the boundary value problem for
the Possion equation with inhomogeneous Dirichlet condition,

‖e‖2,2 ≤ C1‖4e‖L2 + C2δ.

Hence, we have I3 ≤ C1d
1
2‖e‖L2(‖4e‖L2 + δ).

By the same way, we have

I4 =
N∑

i=1

∫

Ωi

e(xi)(e(x)− e(xi))dx ≤
N∑

i=1

∫

Ωi

|e(xi)||(e(x)− e(xi))|dx

≤ d
1
2 C1‖e‖1,4

N∑

i=1

(
∫

Ωi

|e(xi)|dx) = d
1
2 C1‖e‖1,4

|Ω|
N

N∑

i=1

|e(xi)|.
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Since Φ(f∗) ≤ Φ(%), we have

1

N

N∑

i=1

(f∗(xi)− %̃i)
2 ≤ δ2(1 + ‖42%‖2).

So

1

N

N∑

i=1

|e(xi)| ≤ 1

N

N∑

i=1

(|f∗(xi)− %̃i|+ |%̃i − %(xi)|)

≤
√√√√ 1

N

N∑

i=1

|f∗(xi)− %̃i|2 + δ

≤ δ(
√

1 + ‖42%‖2 + 1).

Hence, we have I4 ≤ C1d
1
2 δ(‖4e‖+ δ).

The estimate of I5 is simple. In fact

I5 =
N∑

i=1

∫

Ωi

e2(xi)dx =
N∑

i=1

e2(xi)
∫

Ωi

dx ≤ 1

N
|Ω| ·

N∑

i=1

e2(xi)

≤ 2

N
|Ω| ·

N∑

i=1

((f∗(xi)− %̃i)
2 + (%̃i − %(xi))2)

≤ 2|Ω|δ2(2 + ‖42%‖2) = C1δ
2.

From all the estimate for I3 to I5, we can conclude that

‖e‖2
L2 ≤ C1d

1
2‖e‖L2(‖4e‖L2 + δ) + C2d

1
2 δ‖4e‖L2 + C3δ

2.

Then, we have

‖e‖L2 ≤C1d
1
2 (‖4e‖L2 + δ) + C2d

1
4 δ

1
2‖4e‖L2 + C3δ

≤C1d
1
2‖4e‖L2 + C2δ.

Here, we have some of the estimates in the theorem:

‖4e‖L2 ≤ C1d
1
2 + C2δ

1
2

and
‖e‖L2 ≤ C1d + C2δ

Also, since

‖∇e‖2
L2 =

∫

Ω
∇e · ∇edx

=−
∫

Ω
4e · edx +

∫

∂Ω
e · ∂

∂ν
edS

≤‖e‖L2 · ‖4e‖L2 + C1δ.
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and
‖∇4e‖2

L2 =
∫

Ω
∇4e · ∇4edx

=−
∫

Ω
42e · 4edx +

∫

∂Ω
4e · ∂

∂ν
4edS

≤‖4e‖L2 · ‖42e‖L2 + C1δ,

we have

‖∇e‖L2 ≤ C1d
3
4 + C2δ

1
2

‖∇4e‖L2 ≤ C1d
1
4 + C2δ

1
4 .

This completes the proof. 2

Remark 3.3 In this paper, for the simplicity, we assume that the areas of
all Ωi are same. In the real application, this condition may be not easy to be
satisfied. But if we denote V 1 = maxi{|Ωi|} and V 2 = mini{|Ωi|} and let V 1

V 2

is bounded with some constant, then we still have the same error estimate.

Remark 3.4 In Theorem 3.2, we used Lemma 3.1 to estimate I3 in which
we chose the parameter p to be 4. Actually we can choose any p satisfying
2 < p < ∞. And we can still use the imbedding theorem of Sobolev spaces
W 2,2(Ω) → W 1,p(Ω). The result will be

‖4e‖L2 ≤ L1p · d1− 2
p + L2pδ

1
2 , ‖e‖L2 ≤ L3pd

2− 4
p + L4pδ

‖∇e‖L2 ≤ L5pd
3
2
− 3

p + L6pδ
1
2 , ‖∇4e‖L2 ≤ L7pd

1
2
− 1

p + L8pδ
1
4

where Lip are constants depending on ‖φ‖
H

7
2 (∂Ω)

, ‖ϕ‖
H

3
2 (∂Ω)

and Ω, ‖42%‖L2

and p. So when we choose a larger p we will get a better convergence rate.

Remark 3.5 If Ω is a polygon, (3.1) with k = ` = 0 is well-posed (see [6]
Theorem 4.4.1.3). Since k and ` in (3.1) have extensions f∗− % ∈ H4(Ω) and
4(f∗ − %) ∈ H2(Ω), we can reduce (3.1) to the case with k = ` = 0. Also,
the Green formula and the properties of the Sobolev spaces used in this paper
still hold when Ω is a bounded domain with Lipschitz boundary. Therefore, our
Theorems hold even in the case Ω is a polygon. Our numerical examples in
the next section are given for the case Ω is a rectangle. We utilize this remark
for the examples.

4 Numerical examples

We provide numerical examples in this section.
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We compute the Green function G by Fourier series for our construction.
The detail of the algorithm for constructing f∗ and its second derivatives is
presented in Appendix.

Let %(x1, x2) be a two variable function given by

%(x1, x2) = sin(πx1) sin(2x2) (x1, x2) ∈ Ω,

where Ω = {(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x1 ≤ 2π}. We take %(x1, x2) as the
unknown function to compute the numerical differentiation of its second order
derivatives.

We generate the simulated noisy data as follows:

(1) Decomposite Ω into N elements denoted by Ωi(1 ≤ i ≤ N).
(2) In each element, we choose the center of Ωi as the grid point and get

value %i(1 ≤ i ≤ N) at each grid point.
(3) Add some noise δ to %i, then we get the simulated noisy data %̃i(1 ≤ i ≤

N).

We define a cut-off function χ(x) ∈ C∞

χ(x) =





1, x ∈ Ω′

0, x ∈ ∂Ω

t(0 < t < 1), x ∈ Ω \ Ω′

with suppχ ⊂ Ω and multiply the measured data %̃(x) by χ(x), then we get
the value on grid points in our construction and the boundary value φ and ϕ
become

φ(x) = f |∂Ω = 0, ϕ(x) = 4f |∂Ω = 0.
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Fig. 1. cut-off function χ(x)
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Therefore, we only construct f∗,
∂f∗

∂x1∂x1
(x) etc. in Ω′. The number of elements

in Ω′ is denoted by N ′.

Fig. 2, 3, 4, 5 illustrate our numerical results for constructing the second order
derivatives with N ′ = 202, δ = 0.01.

The numerical results about constructing f∗, f∗x1x1 , f∗x2x2 and f∗x1x2 are illus-
trated in Fig. 2 , Fig. 3, Fig. 4 and Fig. 5, respectively. In Fig. 2-5, from the left
to right, the three figures correspond to the original function, the constructed
function and the constructed error in Ω′.
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Now we investigate how the relative errors depends on N ′ and δ (see Table
1-Table 5). We define the relative error Ef∗ , Ef∗x1x1

for constructed f∗,
∂f∗

∂x1∂x1

by

Ef∗ =

(∑N ′
j=1(f∗(x

j)− %(xj))2
)1/2

(∑N
i=1(%(xj))2

)1/2
,

Ef∗x1x1
=

(∑N ′
j=1(

∂2f∗
∂x1∂x1

(xj)− ∂2%
∂x1∂x1

(xj))2
)1/2

(∑N
i=1(%(xj))2

)1/2
.

Ef∗x2x2
, Ef∗x1x2

are defined in the same way.

When δ is increased from 0.005 to 0.05, Table 1 presents the relative errors
for contructing f∗ and its three second order derivatives with fixed N ′ = 202.

Table 2, 3, 4 and 5 present the relative errors when N ′ being increased from
122 to 242 with fixed δ = 0.005, 0.01, 0.02, 0.05, respectively.

Table 1
Relative errors(%) with different noise level δ(N ′ = 202, fixed)

δ Ef∗ Ef∗x1x1
Ef∗x2x2

Ef∗x1x2

0.005 4.7612 5.6660 4.0606 1.5112

0.01 6.4743 4.9706 7.5713 1.2932

0.02 11.2376 10.2852 14.0513 4.2602

0.05 32.1106 39.3511 43.7051 21.0809

5 Discussion and conclusion

In Fig. 2, 3, 4, 5, we can observe that the figures for the constructed functions
are very similar to that of the corresponding functions. Only by this compar-
ison, we can say our construction is quite good, but the figures are difficult

Table 2
Relative errors(%) with different numbers of grid points N ′(δ = 0.005, fixed)

N ′ Ef∗ Ef∗x1x1
Ef∗x2x2

Ef∗x1x2

122 5.7855 4.2359 5.3461 0.9285

162 5.1353 4.2500 4.5373 0.8953

202 4.7612 5.6660 4.0606 1.5112

242 4.5055 7.7803 3.7527 2.3465
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Table 3
Relative errors(%) with different numbers of grid points N ′(δ = 0.01, fixed)

N ′ Ef∗ Ef∗x1x1
Ef∗x2x2

Ef∗x1x2

122 9.2269 8.1107 11.4623 2.9345

162 7.3962 6.0563 9.0640 1.8404

202 6.4743 4.9706 7.5713 1.2932

242 5.9300 4.3590 6.2529 0.9724

Table 4
Relative errors(%) for different numbers of grid points N ′(δ = 0.02, fixed)

N ′ Ef∗ Ef∗x1x1
Ef∗x2x2

Ef∗x1x2

122 19.4912 20.2812 24.1990 10.2773

162 14.0671 13.5256 17.3932 6.2511

202 11.2376 10.2852 14.0513 4.2602

242 9.5989 8.4584 12.0134 3.1269

Table 5
Relative errors(%) for different numbers of grid points N ′(δ = 0.05, fixed)

N ′ Ef∗ Ef∗x1x1
Ef∗x2x2

Ef∗x1x2

122 52.5281 93.0336 106.9937 51.5658

162 40.4525 56.7802 63.8319 31.0793

202 32.1106 39.3511 43.7051 21.0809

242 26.3455 29.6180 32.8746 15.3715

to observe the precision of the constructed functions. Therefore, we should
investigate the relative errors.

In Table 1, N ′ = 202 being fixed, we increase the noise δ from 0.005 to 0.01,
the constructed errors Ef∗ and Ef∗x2x2

increase, but Ef∗x1x1
and Ef∗x1x2

decrease
a little. When the noise is large than 0.01, the constructed errors grow quickly
with noise level increasing.

In Table 2, δ = 0.005 being fixed, increasing N ′ from 122 to 242, we can see
Ef∗ and Ef∗x1x1

decrease slowly, whereas Ef∗x2x2
and Ef∗x1x2

increase slowly.

From above phenomenon, we can say when noise level is very small such as less
than 0.01, increasing N ′ cannot alway improve the precision of the constructed
functions. Even Ef∗x1x1

and Ef∗x1x2
increase slowly with N ′ being increased. The

reason is that, the numerator in the relative error formula is square summation
of the difference between the exact value and the constructed value, when
noise is very small, the improvement in constructed functions f∗x1x1 and f∗x1x2
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by increasing N ′ can not compensate the increase of error generated by the
number of the summation terms being increased.

In Table 3, δ = 0.01 being fixed, if N ′ = 122, the constructed errors are less
than 12%. With N ′ being increased, the constructed errors for all functions
become smaller. When N ′ = 242, the constructed error Ef∗ is 5.9300% and
Ef∗x1x1

, Ef∗x2x2
and Ef∗x1x2

are less than 7%.

In Table 4 and Table 5, we take δ = 0.02 and δ = 0.05 respectively, and in-
crease N ′ from 12′ to 24′, then the constructed errors for all functions decrease
gradually.

From Table 3-Table 5, we conclude that when δ ≥ 0.01, increasing N ′ can im-
prove the precision of numerical differentiation for three second order deriva-
tives of %(x1, x2) by our method.

There is the fact that, by using the same noisy data, the constructed error
for the mixed derivative is much smaller than that for the other two second
derivatives. When N ′ being increased to 242, the constructed errors are about
5 − 6 times of the noise levels. On the other hand, the constructed error for
the mixed second derivative is less than 3 times of the noise level.

These numerical results show that our method is quite efficient for comput-
ing numerical differentiation for the second derivatives of functions with two
variables from the noisy scattered data. Due to the memory limitation of our
computer, we could not take a larger N ′ to make our numerical results more
precise.
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6 Appendix A: Proof of G(x, y) = G(y, x)

Here we will give the proof that the solution G(x, y) with fixed y ∈ Ω of





42
xG(x, y) = δ(x− y) in Ω

G(x, y)|∂Ω = 4xG(x, y)|∂Ω = 0

satisfies G(x, y) = G(y, x), for any x, y ∈ Ω.

Proof: Suppose x, y are two fixed points in Ω. We define Bδ(y) := {z||z −
y| < δ, z ∈ Ω}, Ωδ := Ω \ (Bδ(x) ∪Bδ(y)), Γδ(x) := ∂Bδ(x) and Γδ(y) :=
∂Bδ(y). According to Green formula, we know that for any u, v ∈ H4(Ω),
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∫

Ωδ

42
xu · v dx =

∫

∂Ωδ

∂

∂νx

4xu · v ds−
∫

∂Ωδ

4xu · ∂

∂νx

v ds

+
∫

∂Ωδ

∂

∂νx

u · 4xv ds

−
∫

∂Ωδ

u · ∂

∂νx

4xv ds +
∫

Ωδ

u · 42
xv dx

Hence∫

Ωδ

42
zG(z, x) ·G(z, y) dz =

∫

∂Ωδ

∂

∂νz

4zG(z, x) ·G(z, y) ds

−
∫

∂Ωδ

4zG(z, x) · ∂

∂νz

G(z, y)ds +
∫

∂Ωδ

∂

∂νz

G(z, x) · 4zG(z, y)ds

−
∫

∂Ωδ

G(z, x) · ∂

∂νz

4zG(z, y)ds +
∫

Ωδ

G(z, x) · 42
zG(z, y)dz

= I1(δ)− I2(δ) + I3(δ)− I4(δ) +
∫

Ωδ

G(z, x) · 42
zG(z, y)dz

Since y, x 6∈ Ωδ, for any z ∈ Ωδ with z 6= x, z 6= y,42
zG(z, y) = 0,42

zG(z, x) =
0.

Hence we have
I1(δ)− I2(δ) + I3(δ)− I4(δ) = 0.

Next we will prove that limδ→0 I2(δ) = 0, limδ→0 I3(δ) = 0, limδ→0 I1(δ) =
G(x, y) and limδ→0 I4(δ) = G(y, x).

Let F (z, x) := 4zG(z, x), then





4zF (z, x) = δ(z − x) in Ω

F (z, x)|∂Ω = 0

Hence F (z, x) ∈ C∞ for z ∈ Ω\{x} and F (z, x) ∼ 1
2π

ln |z − x| (z → x). Since
G(z, x) = G(z, y) = 4zG(z, x) = 4zG(z, y) = 0 (z ∈ ∂Ω)

I2(δ) =
∫

Γδ(x)
+

∫

Γδ(y)
.

Here

∫

Γδ(x)
∼ 1

2π

∫

Γδ(x)
ln |z − x| ∂

∂νz

G(z, y)dz =
1

2π

∫ 2π

0
(δ ln δ)

∂

∂ν
G(δ, θ)

and ∂
∂νz

G(z, y) is bounded, so
∫
Γδ(x) → 0 when δ → 0.

As for
∫
Γδ(y),
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∫

Γδ(y)
F (z, x)

∂

∂νz

G(z, y)ds = F (y, x)
∫

Γδ(y)

∂

∂νz

G(z, y)ds

+
∫

Γδ(y)
(F (z, x)− F (y, x))

∂

∂νz

G(z, y)ds.

Here,

∫

Γδ(y)

∂

∂νz

G(z, y) =
∫

Bδ(y)
F (z, y) ∼ 1

2π

∫ 2π

0
dθ

∫ δ

0
r ln rdθ → 0

Since 4zG(z, y) = F (z, y) ∼ 1
2π

ln |z − y| ∈ L2 near y, by the interior reg-
ularity for the Poison equation, we have G(z, y) ∈ H2 near y and hence

∂
∂νz

G(z, y) ∈ H
1
2 near y. So

∫

Γδ(y)
(F (z, x)− F (y, x)

∂

∂νz

G(z, y) → 0 as δ → 0

thus we have

I2(δ) → 0 as δ → 0

By the same way , we have

I3(δ) → 0 as δ → 0

From the boundary condition for G,

I1(δ) =
∫

∂Ωδ

∂

∂νz

F (z, x)G(z, y)ds = (
∫

Γδ(x)
+

∫

Γδ(y)
)

∂

∂νz

F (z, x)G(z, y)ds.

Hence we know that F (z, x) ∈ C∞ near y, and G(z, y) ∈ H2 which means
G(z, y) ∈ C1−ε. So we have

∫

Γδ(y)

∂

∂νz

F (z, x)G(z, y)ds → 0 (δ → 0).

As for
∫
Γδ(x), we have

∫

Γδ(x)

∂

∂νz

F (z, x)G(z, y) = G(x, y)
∫

Γδ(x)

∂

∂νz

F (z, x)

+
∫

Γδ(x)
(G(z, y)−G(x, y))

∂

∂νz

F (z, x).

Since F (z, x) ∼ 1
2π

ln |z − x|, ∂
∂νz

F (z, x) ∼ 1
2π|z−x| , G(z, y)−G(x, y) = O(|z − x|)
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for z near x,

∫

Γδ(x)
(G(z, y)−G(x, y))

∂

∂νz

F (z, x)ds → 0(δ → 0)

and ∫

Γδ(x)

∂

∂νz

F (z, x)ds ∼ 1

2π

∫ 2∗π

0
δδ−1dθ = 1(δ → 0).

Thus I1(δ) → G(x, y) as δ → 0.

By the same way, we can prove that I4(δ) → G(y, x) as δ → 0. This completes
the proof.

7 Appendix B: Algorithm of computing G(x, y) and the second or-
der derivatives of f∗(x)

Assume Ω = (0, L)× (0, 2π) and fix y ∈ Ω. The problem of solving





42
xG(x, y) = δ(x− y) in Ω

G(x, y)|∂Ω = 4xG(x, y)|∂Ω = 0

can be transformed into solving





4xF (x, y) = δ(x− y) in Ω

F (x, y)|∂Ω = 0

and 



4xG(x, y) = F (x− y) in Ω

G(x, y)|∂Ω = 0.

Define

uk(x) = sin
k1πx1

L
sin

k2x2

2
,

where x = (x1, x2), k = (k1, k2). Then, by a direct computation, F (x, y) and
G(x, y) are given by

F (x, y) =
∑

k

pk(y)u(x) =
∑

k

pk(y) sin
k1πx1

L
sin

k2x2

2
,

G(x, y) =
∑

k

qk(y)uk(x),
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where

pk(x) =
−uk(x)

(
k2
1π2

L2 +
k2
2

22 )πL
2

qk(y) =
−pk(y)

(
k2
1π2

L2 +
k2
2

22 )
=

uk(y)

(
k2
1π2

L2 +
k2
2

22 )2 πL
2

.

So the basis functions can be computed as following

aj(x) =
∫

Ω
G(xj, y)G(x, y)dy

=
∫

Ω

∑

k

qk(x)uk(y)
∑

k

qk(x
j)uk(y)dy

=
∑

k

qk(x)qk(x
j)

∫

Ω
u2

k(y)dy

=
∑

k

qk(x)qk(x
j)

πL

2

and

b(x) =
∫

∂Ω

∂

∂ν
4yG(y, x) · φ(y)dy +

∫

∂Ω

∂

∂ν
G(y, x) · ϕ(y)dy

=−∑

k

qk(x)(
k2

1π
2

L2
+

k2
2

22
)
∫

∂Ω

∂

∂ν
uk(y) · φ(y)dy

+
∑

k

qk(x)
∫

∂Ω

∂

∂ν
uk(y) · ϕ(y)dy

= I(x) + J(x).

Now we divide ∂Ω into four parts: Γ1 : (0, L) × 0; Γ2 : L × (0, 2π); Γ3 :
(L, 0)× 2π; Γ4 : (2π, 0)× 0, and we denote the integral of I, J on each part as
I1, I2, I3, I4, J1, J2, J3, J4. Then b(x) = I1 + I2 + I3 + I4 + J1 + J2 + J3 + J4 =∑

k(I1k + I2k + I3k + I4k + J1k + J2k + J3k + J4k) and each I`k and J`k are given
as follows:





I1k = −pk(x)
k2

2

∫ L

0
sin

k1πy1

L
· φ(y1, 0)dy1,

J1k = −qk(x)
k2

2

∫ L

0
sin

k1πy1

L
· ϕ(y1, 0)dy1,

I2k = pk(x)
k1π

L
(−1)k1

∫ 2π

0
sin

k2

2
y2 · φ(L, y2)dy2,

J2k = qk(x)
k1π

L
(−1)k1

∫ 2π

0
sin

k2

2
y2 · ϕ(L, y2)dy2,

I3k = pk(x)
k2

2
(−1)k2

∫ L

0
sin

k1πy1

L
· φ(y1, 2π)dy1,

J3k = qk(x)
k2

2
(−1)k2

∫ L

0
sin

k1πy1

L
· ϕ(y1, 2π)dy1,

I4k = −pk(x)
k1π

L

∫ 2π

0
sin

k2

2
y2 · φ(0, y2)dy2,

J4k = −qk(x)
k1π

L

∫ 2π

0
sin

k2

2
y2 · ϕ(0, y2)dy2.
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Then the algorithm to compute the second order derivatives of f∗(x) is given
as follwos.

We immediately have 



∂2qk

∂x1∂x1
(x) = −k1

2π2

L2 qk(x),

∂2qk

∂x1∂x1
(x) = −k2

2

22 qk(x),

∂2qk

∂x1∂x2
(x) = −k1π

L
k2

2
qk(x).

Hence,




∂2aj

∂x1∂x1
(x, xj) =

∑
k−k1

2π2

L2 qk(x)qk(x
j),

∂2aj

∂x2∂x2
(x, xj) =

∑
k−k2

2

22 qk(x)qk(x
j),

∂2aj

∂x1∂x2
(x, xj) =

∑
k

k1π
L

k2

2
qk(x)qk(x

j).

Since for
φ(x) = 0, ϕ(x) = 0, x ∈ ∂Ω

we have 



∂2b
∂x1∂x1

= 0,

∂2b
∂x2∂x2

= 0,

∂2b
∂x1∂x2

= 0.

Therefore




∂2f∗
∂x1∂x1

(x) =
∑N

j=1 cj
∂2aj

∂x1∂x1
=

∑N
j=1 cj

∑
k−k1

2π2

L2 qk(x)qk(x
j),

∂2f∗
∂x2∂x2

(x) =
∑N

j=1 cj
∂2aj

∂x2∂x2
=

∑N
j=1 cj

∑
k−k2

2

22 qk(x)qk(x
j),

∂2f∗
∂x1∂x2

(x) =
∑N

j=1 cj
∂2aj

∂x1∂x2
=

∑N
j=1 cj

∑
k

k1π
L

k2

2
qk(x)qk(x

j).
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APPLICATION OF NUMERICAL DIFFERENTIATION TO
DETECTING AN EARLY STAGE BREAST CANCER BY MRE

G. NAKAMURA, S. WANG AND M. SUGA

Abstract. As an application of the numerical differentiation, we propose a

method for an approximate identification of the early stage breast cancer by

MRE.

1. Introduction

Numerical differentiation is a problem to determine the derivatives of a func-

tion from some input data on scattered points. It arises from many scientific re-

searches and applications. The main difficulty is that, it is an ill-posed problem,

which means, the small error of measurement will cause huge error in the computed

derivatives ([7], [9], [14]). The Tikhonov regularization for treating the numerical

differentiation problem has been shown quite effective ([5], [7], [11]). A simple but

very useful solution for the one-dimensional case based on Tikhonov regularization

method has been developed in ([17], [9]). For the two dimensional case, a scheme for

computing the first order derivatives is given in [18] and the second order derivatives

is given in [12].

A counterpart of this method is that it also gives a way to detect the discontinuity

in the derivatives of a function which we want to identify. This was shown by [17]

for the one-dimensional case.

In this paper, we extend this to higher dimensional case. As a very interesting

application of this method, we consider the inverse problem detecting an early stage

breast cancer by MRE. MRI equipped with some oscillation is called MRE which

provides the elastic shear wave field inside a human body caused by the oscillation

as a measured data. The importance of this method especially applied for detecting

an early stage cancer is as follow. For the early stage cancer the blood vessel inside

1991 Mathematics Subject Classification. 65D25, 45D05, 35R25.

Key words and phrases. Numerical differentiation, Green function, second order derivative.

1



2 G. NAKAMURA, S. WANG AND M. SUGA

the cancer is not much developed. Hence, MRI which detects the distribution of

the hydrogen molecule is not effective. However, MRE can measure the stiffness

of the cancer which is quite different from the surrounding tissue. The paper is

organized as follows: in section 2, we state and review the numerical differentiation;

in section 3, we state and prove a theorem showing that the scheme of the numerical

differentiation can detect the discontinuity in the derivatives of a function which

we want to detect; in section 4, we applied the the results in section 2 and 3 to

detect the early stage breast cancer.

Not only for detecting the early stage breast cancer, our numerical differentiation

can also be effectively applied to edge detection for image analysis and has big

possibility to apply for identifying the crystal growing inside a liquid solution.

In our rest of our paper we describe everything in the 2 dimensional case for

simplicity, it remains true for the higher dimensional case.

2. Statements of the problems and review of the known results

Suppose that Ω ⊂ R2 is a bounded domain with a boundary ∂Ω of piecewise

C2 class and y = y(x) is a function defined in Ω. Let N be a natural number

and {xi}N
i=1 be a group of points in Ω. We assume that Ω is divided into N parts

{Ωi}N
i=1, and there is only one point of {xi}N

i=1 in each part. For simplicity we also

assume that Ω is a rectangle and all Ωi are congruent rectangles. We denote di as

the diameter of Ωi and let d = max{di}.
Suppose that we know the approximate value ỹi of y(x) at point xi, i.e.

|ỹi − y(xi)| ≤ δ, i = 1, 2, · · · , N,

where δ > 0 is a given constant called the error level.

The first problem is to find a function f∗(x) which approximates function y(x)

such that

lim
d→0,δ→0

‖∇f∗ −∇y‖L2(Ω) = 0.

By using Tikhonov regularization method, we treat this problem as the following

optimization problem:
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Problem 2.1. Define a cost functional:

Φ1(f) =
1
N

N∑

j=1

(f(xj)− ỹj)2 + α‖4f‖2L2(Ω), f ∈ H1

where H1 = {f |f ∈ H2(Ω), f |∂Ω = φ1} and α > 0 is a regularization parameter.

We have assumed that there is a function φ1(x) ∈ H3/2(∂Ω) satisfying ‖φ1(x) −
y(x)‖H3/2(∂Ω) ≤ δ.

The problem is then to find f∗ ∈ H1 such that Φ1(f∗) ≤ Φ(f) for every f ∈ H1.

The second problem is to find a function f∗(x) which approximates function y(x)

such that

lim
d→0,δ→0

‖4f∗ −4y‖L2(Ω) = 0.

Again by using Tikhonov regularization method, we treat this problem as the

following optimization problem:

Problem 2.2. Define a cost functional:

Φ2(f) =
1
N

N∑

j=1

(f(xj)− ỹj)2 + α‖42f‖2L2(Ω), f ∈ H2

where H2 = {f |f ∈ H4(Ω), f |∂Ω = φ1,4f |∂Ω = φ2} and α > 0 is a regularization

parameter.

The problem is then to find f∗ ∈ H2 such that Φ2(f∗) ≤ Φ(f) for every f ∈ H2.

For each Problem 2.1 and Problem 2.2, admit a unique solution f∗ and f∗∗.

Also, there are procedures to construct f∗ and f∗∗. We will give the computational

scheme for f∗ and f∗∗. When the regularization parameter α is taken as α = δ2, the

error estimate for the solutions f∗ and f∗∗ are given in [18] and [12], respectively.

Moreover, by taking a compact set K ⊂ Ω and cutoff functions χk ∈ C2k
0 (Ω) such

that 0 ≤ χk ≤ 1, χk = 1 on K and replacing ỹi by χk(xi)ỹi for Problem 2.k (k=1,2),

respectively, we can take φ1, φ2 = 0. This avoids the singularity which may come

from ∂Ω at which ∂Ω is singular. For the rest of the paper, by using this argument,

we let φ1, φ2 = 0.
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3. The computational scheme

We first give the computational scheme for f∗.

Let G∗(x, x∗) be the harmonic Green function with fixed x∗ ∈ Ω given as the

solution to



4xG∗(x, x∗) = δ(x− x∗) in Ω

G∗|∂Ω = 0,

and define a∗j(x) by

(3.1) a∗j(x) =
∫

Ω

G∗(xj , x
∗)G(x∗, x)dx∗ .

By defining

A∗ =




αN + a∗1(x1) a∗2(x1) a∗3(x1) · · · a∗N (x1)

a∗1(x2) αN + a∗2(x2) a∗3(x2) · · · a∗N (x2)

· · · · · · · · · · · · · · ·
a∗1(xN ) a∗2(xN ) a∗3(xN ) · · · αN + a∗N (xN )




we consider the linear system for c∗

(3.2) A∗c∗ = b∗,

where

c∗ =




c1

c2

· · ·
cN




,b∗ =




ỹ1

ỹ2

· · ·
ỹN




.

Then we can compute

(3.3) f∗(x) =
N∑

j=1

cja∗j(x) + b(x).

It is shown in [18] that the solution of this linear system for c exists and is

unique. Then, the following theorem gives how to construct f∗ ([18]).

Theorem 3.1. Suppose function f∗ =
∑N

j=1 cja∗j(x) where a∗j(x) is defined in

(3.1), {cj}N
j=1 is the solution of linear system (3.2), then f∗ is the solution of

Problem 2.1.
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Next, we give the computational scheme for f∗∗.

Let G∗∗(x, x∗) be the bi-harmonic Green function with fixed x∗ ∈ Ω given as the

solution to



42

xG∗∗(x, x∗) = δ(x− x∗) in Ω

G∗∗|∂Ω = 0, 4xG∗∗|∂Ω = 0.

We can obtain G∗∗(x, y) by solving



4xF (x, y) = δ(x− y) in Ω

F (x, y)|∂Ω = 0

and



4xG∗∗(x, y) = F (x, y) in Ω

G∗∗(x, y)|∂Ω = 0 ,

and define a∗∗j(x) by

(3.4) a∗∗j(x) =
∫

Ω

G∗∗(xj , x
∗)G∗∗(x∗, x)dx∗ .

By defining

A∗∗ =




αN + a∗∗1(x1) a∗∗2(x1) a∗∗3(x1) · · · a∗∗N (x1)

a∗∗1(x2) αN + a∗∗2(x2) a∗∗3(x2) · · · a∗∗N (x2)

· · · · · · · · · · · · · · ·
a∗∗1(xN ) a∗∗2(xN ) a∗∗3(xN ) · · · αN + a∗∗N (xN )




we consider the linear system for c∗

(3.5) A∗∗c∗∗ = b∗∗,

where

c∗∗ =




c1

c2

· · ·
cN




,b∗∗ =




ỹ1

ỹ2

· · ·
ỹN




.

It is shown in [12] that the solution of this linear system for c exists and is

unique. Then, the following theorem gives how to construct f∗∗ ([12]).
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Theorem 3.2. Suppose function f∗∗ =
∑N

j=1 cja∗∗j(x) where a∗∗j(x) is defined

in (3.4), {cj}N
j=1 is the solution of linear system (3.5), then f∗∗ is the solution of

Problem 2.2.

4. Detection of the discontinuity in the derivative

In this section, we consider Problem 2.1 again. For simplicity, we suppress the

subscript 1, for instance Φ(f) = Φ1(f).

Let Ω′ ⊂ Ω be a domain sharing the same partition {Ωi}N
i=1 of Ω. That is

Ω′ = ∪L
`=1 Ωi`

. For simplicity, we write Ω′` = Ωi`
. We also denote the area of Ω by

|Ω|.

Theorem 4.1. Suppose f∗ is the minimizer of Problem 2.1. Let α = δ2. If

y ∈ C0
0 (Ω) \H2(Ω′), then we have

(4.1) ‖4f∗‖L2(Ω′) →∞ as δ → 0, N →∞ .

Proof. We will basically follow the proof for the 1 dimensional case given in [15].

Assume that (4.1) is false. Then, there exist C > 0 and

δ(m) → 0, N (m) →∞ (m →∞)

such that

(4.2) ‖4f∗(·; δ(k), N (m))‖L2(Ω′) ≤ C (k, m = 1, 2, · · · ) .

Since H2
0 (Ω) is dense in C0

0 (Ω), there exist yk ∈ H2
0 (Ω) (k = 1, 2, · · · ) such that

yk|∂Ω = 0, ‖yk − y‖C0(Ω) ≤ k−1 (k = 1, 2, · · · )

and

supk‖yk‖L2(Ω) < ∞ .

Without loss of generality, we can assume that δ(k)‖4yk‖2L2(Ω) < 1 (k = 1, 2, · · · ).

Now take k = N (m) (m = 1, 2, · · · ) and abbreviate δ(k) and yk with k = N (m) by

δ(m) and ym, respectively. For simplicity, we will still use the same notations Ωi, Ω′`
even for the case the number of partition is N (m). Then, by Φ(f∗(·; δ(k), N (m))) ≤
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Φ(ym),

(4.3)

1
N(m)

∑N(m)

j=1 (f(xj ; δ(k), N (m))− yδ(k)

j )2 ≤ Φ(f∗(·; δ(k), N (m)) ≤ Φ(ym)

≤ |Ω|
N(m) (ym(xj)− yδ(k)

j )2 + (δ(k))2‖4ym‖2L2(Ω)

≤ 2((δ(k))2 + 1
(N(m))2

) + δ(k) .

Hence, with the easy estimate

(4.4)
1

N(m)

∑L
`=1(f∗(x`; δ(k), N (m))− yδ(m)

` )2 ≤ 1
N(m)

∑N(m)

j=1 (f∗(xj ; δ(k), N (m) − yδ(k)

j )2

≤ 2((δ(k))2 + 1
N(m))2

) + δ(k) ,

we have

(4.5)
1

N (m)

L∑

`=1

f2
∗ (x`; δ(k), N (m)) ≤ 2

1
N (m)

L∑

`=1

(f∗(x`; δ(k), N (m))−yδ(k)

` )2+2
1

N (m)

L∑

`=1

(yδ(k)

` )2 .

By

(4.6) (yδ(k)

` )2 ≤ 2(yδ(k)

` − y(x`))2 + 2y(x`)2 ≤ 2((δ(k))2 + ‖y‖2
C0(Ω)

) .

Hence, by (4.4) to (4.6),

(4.7)
1

N (m)

L∑

`=1

f2
∗ (x`; δ(k), N (m)) ≤ 4((δ(k))2+

1
(N (m))2

)+2δ(m)+4((δ(k))2+‖y‖2
C0(Ω)

) =: A < ∞ .

Now by the embedding H2(Ω) ⊂ C0(Ω) which is true up to 3 dimension and the

definition of the Riemann integral, for any k (k = 1, 2, · · · ), there exists a positive

integer M(k) such that
∫

Ω′
|f2
∗ (x; δ(k), N (m))|2 dx ≤ 2A

if k, m are large enough. Hence, there exists a monotonically decreasing sequence

of positive integers mk (k = 1, 2, · · · ) such that
∫

Ω′
|f2
∗ (x; δ(k), N (mk))|2 dx ≤ 2A (k = 1, 2, · · · ).

Combining this with (4.2), {‖f∗(·; δ(k), N (mk))‖H2(Ω7)}∞k−1 is bounded. By the weak

compactness of H2(Ω′), the compactness of the embedding H2(Ω′) ⊂ C0(Ω′) and

taking a subsequence of {f∗(·; δ(k), N (mk))}∞j=1 if necessary, there exists f̃ ∈ H2(Ω′)

such that

(4.8) ‖f∗(·; δ(k), N (mk))− f̃‖C0(Ω′) → 0 (k →∞) .
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Now, let 0 < ε < 1. By the uniform continuity of y − f̃ on Ω′ and (4.8), there

exist K ∈ N such that for any k ≥ K, we have

(4.9) |(y(x)− f̃(x))− (y(x`)− f̃(x`))| <
√

ε

2|Ω| (x ∈ Ω′`, 1 ≤ `L).

By using (4.9) first and then (4.5), we have

(4.10)

‖y − f̃‖2L2(Ω′) =
∑L

`=1

∫
Ω′`

(y(x)− f̃(x))2 dx

≤ 2 |Ω|
N(mk)

∑L
`=1(y(x`)− f̃(x`))2 + ε

≤ 6 |Ω|
N(mk)

∑L
`=1{(y(x`)− yδ(mk

` )2 + (yδ(mk)

` − f∗(x`; δ(k), N (mk)))2

+(f∗(x`; δ(k), N (mk))− f̃(x`))2)}+ ε

≤ 6|Ω|(δ(k))2 + 12|Ω|((δ(k))2 + 1
(N(mk))2

) + 6|Ω|δ(k) + 6ε2 + ε .

Hence, letting k →∞, we have

‖y − f̃‖2L2(Ω′) < 7ε .

Therefore, y = f̃ ∈ H2(Ω′). This is a contradiction.

5. Application to detecting the early stage breath cancer

We propose a scheme for detecting an early stage breast cancer as an application

of Theorem 4.1. Note that we are assuming that there is a discontinuity in their

elastic properties between the cancer and the surrounding tissue. Of course this

is an artificial assumption. But to analyze the measured data obtained by Suga’s

experiment, we need to assume this. If we can succeed analyzing the experimental
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data effectively, we will consider the case that there is not any discontinuity. Again

for simplicity we describe the scheme for the 2 dimensional case.

Let Ω be rectangle given in Section 2. We consider Ω as an elastic medium

with a compactly embedded inclusion D with C2 boundary ∂D. D corresponds

to a cancer in some part Ω of the two dimensional cross section of a breath. For

convenience we denote D by Ω+ and its exterior in Ω by Ω−. We consider that the

stiffness (λ+, µ+) of Ω+ is much larger than the stiffness (λ−, µ−) of Ω− and has

a clear jump across ∂Ω+. Since we are interested in the early stage brest cancer

which is small, we can assume that the stiffness in Ω+ is uniform. That is λ+, µ+

are constant.

In the MRE measurement, the elastic wave field u is incompressible. That is

divE(u) = 0 for the strain tensor E(u) := 1/2(∇u + t(∇u)). So, we will neglect

divE(u). Then, it is easy to see that in Ω+, the wave field u+ in Ω+ satisfies

(5.1) µ+4u+ + k2u+ = 0 in Ω+ ,

where k > 0 is the wave number. Due to the discontinuity of the stiffness across Ω+,

the numerically simulated wave field u is continuous everywhere, but its gradient

∇u has a clear discontinuity at ∂Ω+ which means that it is not in H2 in any

neighborhood of each point of ∂Ω+.

Basing on these facts, our scheme for detecting ∂Ω+ and the shear stiffness µ+

is as follows.

Step 1: Use Theorem 4.1 to detect ∂Ω+.

Step 2: Use the result for Problem 2.2 to compute4u+ and then use (5.1) to obtain

µ+.
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Recovery of the Elasticity and Viscosity from the

Interior Measurements

Gen Nakamura∗

1 Introduction

In the method of dynamic MR-Elastography, it is reasonable to consider not
only the elastic properties of the material but also the viscous properties of
the material. There are various models to introduce viscosity into the elastic
equation. The simplest model is the so-called Voigt model.

That is, for any time t > 0, and a point x = (x1, · · · , xn) in a bounded
domain Ω ⊂ Rn(n = 2, 3) whose boundary ∂Ω is C∞ smooth, the displace-
ment u(x, t) satisfies the equation:

ρ(x)∂2
t ui −

∑

k

∂

∂k

∑

lm

λilkm(x)ulm −
∑

k

∂

∂k

∑

lm

ηilkm(x)∂tulm = 0, (1.1)

where

uij :=
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
,

ρ(x) > 0 is the density, the elasticity tensor λilkm and the viscosity tensor
ηilkm satisfy the symmetries:

λilkm = λkilm = λikml = λlmik,

ηilkm = ηkilm = ηikml = ηlmik.

If we assume that the material is isotropic and incompressible, the Voigt
model (1.1) reduces to a scalar equation with shear modulus a(x) and vis-
cosity coefficient b(x).

For simplicity, we assume n = 2 and a(x), b(x), ρ(x) ∈ C∞(Ω̄) satisfy the
following condition

a(x), b(x), ρ(x) > 0 on Ω̄.

∗Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan.
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Then, the forward problem is as follow.
Forward Problem:
For any f ∈ C2([0,∞);H

3
2 (∂Ω)), to find a solution u ∈ C0([0,∞);H1(Ω))∩

C1([0,∞);L2(Ω)) to




ρ(x)∂2
t u−∇ · (a(x)∇u + b(x)∇ut) = 0 in (0,∞)× Ω,

u = f on (0,∞)× ∂Ω,

u = ut = 0 on {0} × Ω.

(1.2)

It is well known the forward problem is well posed. We denote the
solution u to (1.2) by u = u(f). Moreover, we have the following:

Proposition 1.1. For any u0 ∈ H1(Ω), u1 ∈ L2(Ω), F ∈ C0([0,∞);L2(Ω)),
there exist a unique solution u ∈ C0([0,∞);H1(Ω)) ∩ C1([0,∞);L2(Ω)) to





ρ(x)∂2
t u−∇ · (a(x)∇u + b(x)∇ut) = F in (0,∞)× Ω,

u = 0 on (0,∞)× ∂Ω,

u = u0, ut = u1 on {0} × Ω.

(1.3)

Also, there exist a constant c0 > 0 independent of u0, u1, F such that

‖u(t)‖H1(Ω) + ‖∂tu(t)‖L2(Ω) = O(e−c0t) (t →∞). (1.4)

Based on the well posedness of the forward problem, we formulate the
own inverse problem as follow.

Inverse Problem:
Suppose a(x), b(x), ρ(x) are unknown. Reconstruct a(x), b(x), ρ(x) from

u(f) in (0, T ) × Ω̄ for finitely many f ’s, where u = u(f) is the solution of
(1.2).

Theorem 1.2. There is a reconstruction procedure for this inverse problem.

The details of the reconstruction procedure will be given later.

2 The dominant part of u(f)

Lemma 2.1. Let 0 < ω < c0 and f(x.t) = e−ωtg(x) with g(x) ∈ H
1
2 (∂Ω).

Then, (1.2) has a unique solution u ∈ C0([0,∞);H1(Ω))∩ C1([0,∞);L2(Ω))
with dominant part e−ωtv(x) where v(x) solves

{
∇ · (a∇v − ωb∇v)− ρω2v = 0 in Ω,

v = g on ∂Ω,
(2.1)
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Hence, we can say that we know v in Ω if we know u(e−ωtg) in Ω. From
now on we only consider ω small enough so that

γ(ω) := a− ωb > 0 on Ω̄. (2.2)

3 Application of oscillating-decaying solutions

Lemma 3.1. By using finitely many oscillating-decaying solutions (abbrevi-
ated by OD solutions), and two different ω’s, we can approximately recover
a(x), b(x), ρ(x) and their derivatives on ∂Ω.

Hence we can approximately extend a(x), b(x), ρ(x) smoothly outside Ω
as positive functions.

Let’s take a box Ω̃ ⊃ Ω̄. We round the corners of Ω̃ so that ∂Ω̃ is smooth.
We still use the same notation Ω̃ (see Figure. 1) to denote the domain we
obtain by this extension and assume that Ω̃ ⊃ Ω̄.

Figure. 1: Diagram of the domains

4 Recover a(x), b(x) and ρ(x)

For simplicity, we will work on Ω̃ instead of Ω to illustrate our reconstruction
procedure.

Lemma 4.1. Consider the solution v to (2.1) for ω = ω1, ω2, ω3 and denote
the associated v’s by v1, v2, v3. By an algebraic manipulation, we can delete
the terms with ρ and obtain a first order equation with leading term:{

ω2
2v2∇v1 · ∇(a− ω1b)− ω2

1v1∇v2 · ∇(a− ω2b)

ω2
3v3∇v1 · ∇(a− ω1b)− ω2

1v1∇v3 · ∇(a− ω3b)

}
. (4.1)
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Lemma 4.2. By using an OD solution we can continue a(x), b(x) from one
side of Ω̃ by solving the Cauchy problem for a hyperbolic system with respect
to a(x), b(x). Here the initial surface is the side of Ω̃ mentioned above.

Remark 4.3. Of course, once we recover a(x), b(x) in a subdomain of Ω̃,
we can recover ρ(x) in the subdomain if g 6≡ 0 on ∂Ω̃. This is because the
set of points at which v does not vanish is dense in Ω̃ due to the unique
continuation property if the partial differential equation given in (2.1).

Now we want to repeat this reconstruction procedure to recover a(x), b(x)
and ρ(x).

For that, we consider some domain Ω̃1, such that ¯̃Ω1 ⊂ Ω̃, a(x), b(x), ρ(x)
are known in Ω̃\ ¯̃Ω1 and its shape is analogous to that of Ω̃. We note that Ω̃1

does not have to contain Ω. We again use OD solution to set up the Cauchy
problem for a hyperbolic system with respect to a(x), b(x) near one side of
Ω̃1 which is parallel to the previous side of Ω̃1. This OD solution needs the
full information about a(x), b(x), ρ(x) in Ω̃1. However, the dominant part
of its Cauchy data can be obtained from (a, b)|

∂eΩ1
.

Now, by solving the Cauchy problem for the partial differential equation
given in (2.1) with an incomplete Cauchy data (i.e. the previous dominant
part of the Cauchy data), we can generate a Dirichlet data g in (2.1) such
that the associated solution v to (2.1) approximates the Cauchy data of the
OD solution on the previous side of Ω̃1. For solving the Cauchy problem
approximately with incomplete Cauchy data, we use the alternating method.

Since the solvability of the Cauchy problem of hyperbolic system only
depends on its coefficients and the coefficients are generated by the OD
solution, we can completely control the solvability if we assume some a
priori bounds on a(x), b(x).
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1 山本先生の理論

領域 Ω ⊂ R3 を占める Voigt 型等方粘弾性体の運動方程式は次のとおり．

ρ
∂2ui

∂t2
−

∑

j

∂

∂xj

(
µ

(
∂ui

∂xj
+
∂uj

∂xi

))
− ∂

∂xi
(λ∇ · u)

−
∑

j

∂

∂xj

(
η

(
∂u̇i

∂xj
+
∂u̇j

∂xi

))
− ∂

∂xi

(
ζ̃∇ · u̇

)
= Fi, i = 1, 2, 3. (Y20’)

ここで，

u = (u1, u2, u3), ui = ui(t, x) は静止状態からの xi 方向の変位， u̇ = ∂u/∂t,
ρ = ρ(x) は密度， Fi = Fi(t, x) は体積力，
µ = µ(x) は剛性率， λ = λ(x) はもう一方の Lamé係数，
η = η(x) は粘性， ζ̃ = ζ̃(x) は実数値で，ζ = ζ̃ + (2/3)η が体積粘性率，

∇ =
(

∂
∂x1

, ∂
∂x2

, ∂
∂x3

)

を表す．以下 ρ は Ω 上で定数とし，Fi = 0 とする．

力に対する変形が，位置に依存して位相 θ = θ(x) だけ遅れて生じることを考える．すなわち，

u(t, x) = A(x) cos(ωt− θ(x))

なる運動を考えると，

u(t, x) = A(x)
(
cosωt cos θ + sinωt sin θ

)

= (A cos θ) cosωt+ (A sin θ) sinωt.
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これより，次の u(t, x) で表される運動を考える.

u(t, x) = φ(x) cos(ωt) + ψ(x) sin(ωt) (Y22’)

すなわち (Y20’) の解として (Y22’) の形のものを考える．これを time-harmonic solution と云う
ことにする．ω は考える周波数，φ = (φ1, φ2, φ3), ψ = (ψ1, ψ2, ψ3) である．

time-harmonic solution を式 (Y20’) に代入すると，φ, ψ について次を得る (i = 1, 2, 3)．

−ρω2φi −
∑

j

∂

∂xj

(
µ

(
∂φi

∂xj
+
∂φj

∂xi

))
− ∂

∂xi
(λ∇ · φ)

− ω
∑

j

∂

∂xj

(
η

(
∂ψi

∂xj
+
∂ψj

∂xi

))
− ω

∂

∂xi

(
ζ̃∇ · ψ

)
= 0, (Y31a’)

−ρω2ψi −
∑

j

∂

∂xj

(
µ

(
∂ψi

∂xj
+
∂ψj

∂xi

))
− ∂

∂xi
(λ∇ · ψ)

+ ω
∑

j

∂

∂xj

(
η

(
∂φi

∂xj
+
∂φj

∂xi

))
+ ω

∂

∂xi

(
ζ̃∇ · φ

)
= 0. (Y31b)

非圧縮性の仮定 ∇ · u = ∇ · u̇ = 0,すなわち

∇ · φ = ∇ · ψ = 0 (Y34)

および振動方向についての仮定

∑

j

∂µ

∂xj

∂φj

∂xi
= 0,

∑

j

∂µ

∂xj

∂ψj

∂xi
= 0,

∑

j

∂η

∂xj

∂φj

∂xi
= 0,

∑

j

∂η

∂xj

∂ψj

∂xi
= 0 (Y43)

をすると，(Y31)は次で近似される．

− ρω2φi −∇ · (µ∇φi)− ω∇ · (η∇ψi) = 0, in Ω, (Y44a’)

− ρω2ψi −∇ · (µ∇ψi) + ω∇ · (η∇φi) = 0, in Ω. (Y44b)

さらに均質性 (µ, η が定数; 仮定 (Y45))を仮定すると，次を得る．

− ρω2φi − µ4φi − ωη4ψi = 0, in Ω, (Y46a)

− ρω2ψi − µ4ψi + ωη4φi = 0, in Ω. (Y46b)

仮定 (Y43) の意味はつくか? 均質性の仮定

∂µ

∂xi
= 0,

∂η

∂xi
= 0 (Y45)

をすると，仮定 (Y43) は満たされる．
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2 順問題の設定

以下，x1(i = 1) の方向を考えるものとして添字は省略する．順問題では φ, ψ が未知である．

i = 1 の方向のみを考えて，φ = φ(x), ψ = ψ(x) はスカラ函数としていることに注意する．
運動方程式として (Y44) から出発する．すなわち，

− ρω2φ−∇ · (µ∇φ)− ω∇ · (η∇ψ) = 0, in Ω, (1a)

− ρω2ψ −∇ · (µ∇ψ) + ω∇ · (η∇φ) = 0, in Ω. (1b)

式 (1)に境界条件を加え，順問題の設定をおこなう．順問題の境界条件とは，物体表面での変位や応
力を与えるのが一般的である．このとき (1)に境界条件を合わせた系 (問題設定)が適切 (well-posed)
になるように与えることが望ましい．系が適切であるとは，系の (i)解が存在して，(ii)解はただ
ひとつであり，(iii)境界値や係数に対して解が連続である，の 3条件が満たされることである．

2.1 境界条件の設定 (表面の変位)

物体の表面 ∂Ω の一部 Γd で静止状態からの変位 (振幅) U が与えられているとする．このとき
φ, ψ の Dirichlet 値を次で設定する．

φ = U, ψ = 0.

2.2 境界条件の設定 (表面応力)

Γd を除いた境界 Γ = ∂Ω \ Γd で，表面応力 (体積力とは異なる) が与えられているとする．こ
の表面応力を表す境界条件を，(1)の弱形式から考察する．式 (1)に任意のテスト函数 v = v(x) を
乗じて Ω 上で積分すると

− ρω2

∫

Ω

φv dx−
∫

Ω

∇ · (µ∇φ)v dx− ω

∫

Ω

∇ · (η∇ψ)v dx = 0, (2a)

− ρω2

∫

Ω

ψv dx−
∫

Ω

∇ · (µ∇ψ)v dx+ ω

∫

Ω

∇ · (η∇φ)v dx = 0. (2b)

Green の公式により

− ρω2

∫

Ω

φv dx−
{∫

∂Ω

µ
∂φ

∂n
v dσ −

∫

Ω

µ∇φ · ∇v dx
}
− ω

{∫

∂Ω

η
∂ψ

∂n
v dσ −

∫

Ω

η∇ψ · ∇v dx
}

= 0,

(3a)

− ρω2

∫

Ω

ψv dx−
{∫

∂Ω

µ
∂ψ

∂n
v dσ −

∫

Ω

µ∇ψ · ∇v dx
}

+ ω

{∫

∂Ω

η
∂φ

∂n
v dσ −

∫

Ω

η∇φ · ∇v dx
}

= 0.

(3b)

ここで n = (n1, n2, n3), ni = ni(x) は ∂Ω の外向き単位法線である．
弱形式 (3)から，∂Ω における (1)の flux は次のとおり．

µ
∂φ

∂n
+ ωη

∂ψ

∂n
= f1, µ

∂ψ

∂n
− ωη

∂φ

∂n
= f2. (4)

この f1, f2 が Γ における表面応力であると考えられる．(表面応力であると考えたい)
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以上をまとめて，粘弾性の定常状態の運動として，次の順問題を設定する．

−ρω2φ−∇ · (µ∇φ)− ω∇ · (η∇ψ) = 0, in Ω, (5a)

−ρω2ψ −∇ · (µ∇ψ) + ω∇ · (η∇φ) = 0, in Ω, (5b)

φ = U, ψ = 0, on Γd, (5c)

µ
∂φ

∂n
+ ωη

∂ψ

∂n
= f1, µ

∂ψ

∂n
− ωη

∂φ

∂n
= f2, on Γ. (5d)

µ, ηに然るべき条件を課すと，この問題設定は適切か?
菅先生の実験を念頭において，力を加えない (stress free) 条件を考える．これは f1 = f2 = 0 で
表される．(このとき (5d)は ∂φ/∂n = ∂ψ/∂n = 0 on Γ と同値である．)

2.3 順問題の数値計算

問題 (5)に対応する弱形式は次のとおり: Find φ(x), ψ(x) such that

φ = U, ψ = 0 on Γd, (6a)

− ρω2

∫

Ω

φv dx+
∫

Ω

µ∇φ · ∇v dx+ ω

∫

Ω

η∇ψ · ∇v dx =
∫

Γ

f1v dσ, (6b)

− ρω2

∫

Ω

ψv dx+
∫

Ω

µ∇ψ · ∇v dx− ω

∫

Ω

η∇φ · ∇v dx =
∫

Γ

f2v dσ, (6c)

for any v with v|∂Ω\Γ = 0.

有限要素法で (6)の数値計算をおこない，φ, ψ の近似解を構成する．これをもって (5)の近似解と
する．

然るべき条件のもとで有限要素法の収束性と安定性を示せ．(φ, ψ, v は H1, µ, η は区分的に C∞?)

3 係数決定の逆問題

式 (1) (あるいは系 (5))を満たす φ, ψ がわかっているとする．Ω に含まれるある領域 Ω′ にお
いて µ, η が定数であると仮定すると，(1) は (46)式になる．すなわち次を満たす．

− ρω2φ− µ4φ− ωη4ψ = 0, in Ω′, (7a)

− ρω2ψ − µ4ψ + ωη4φ = 0, in Ω′. (7b)

µ, η について代数的に解くと次を得る．

µ = −ρω2 φ4φ+ ψ4ψ
(4φ)2 + (4ψ)2

, (8a)

η = −ρω φ4ψ − ψ4φ
(4φ)2 + (4ψ)2

. (8b)

µ, η がともに定数であることがわかっていれば，剛性率 µ と粘性率 η が求められる．

(4φ)2 + (4ψ)2 = 0 なら (7)より φ = ψ = 0，すなわち，この点は停留点である．そのような点
が存在しないことを証明できるか?
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3.1 係数同定の数値計算

空間方向を 2次元で考える．領域 Ωに間隔 h(> 0)の格子点を考える．すなわち，xi = ih, yj = jh

として格子点 {(xi, yj) ∈ Ω ; i, j ∈ Z} を考える．φ, ψ の格子点上での値がわかっているとする．
式 (8)で必要な 4φ の計算には次の近似を利用する．φ ∈ C4 と仮定して Taylor 展開より

φ(xi ± h, yj) = φ(xi, yj)± ∂φ

∂x
(xi, yj)h+

1
2
∂2φ

∂x2
(xi, yj)h2 ± 1

3!
∂3φ

∂x3
(xi, yj)h3 +O(h4),

φ(xi, yj ± h) = φ(xi, yj)± ∂φ

∂y
(xi, yj)h+

1
2
∂2φ

∂y2
(xi, yj)h2 ± 1

3!
∂3φ

∂y3
(xi, yj)h3 +O(h4).

φij = φ(xi, yj) として辺々を加えると

φi+1,j + φi−1,j = 2φi,j +
∂2φ

∂x2
(xi, yj)h2 +O(h4),

φi,j+1 + φi,j−1 = 2φi,j +
∂2φ

∂y2
(xi, yj)h2 +O(h4).

この辺々を加えて整理すると 2次元の laplacian の差分近似を得る．

4φ(xi, yj) ≈ φi+1,j + φi−1,j + φi,j+1 + φi,j−1 − 4φi,j

h2
(9)

この離散化誤差は O(h2) である．近似 (9)による (8)の数値計算では，計算したい点 (xi, yj) およ
び隣接する 4 つの格子点 (xi+1, yj), (xi−1, yj), (xi, yj+1), (xi, yj−1)での φ, ψ の値が必要である．

4 粘弾性体の表面応力

境界 ∂Ω における (4)の意味について考える．本節では，再び φ = (φ1, φ2, φ3), ψ = (ψ1, ψ2, ψ3)
とする．

まず，式 (Y20’)の flux は次のとおり．

fi = µ
∑

j

(
∂ui

∂xj
+
∂uj

∂xi

)
nj + λ(∇ · u)ni + η

∑

j

(
∂u̇i

∂xj
+
∂u̇j

∂xi

)
nj + ζ̃(∇ · u̇)ni. (10)

表面応力が fi = f
(c)
i (x) cosωt+ f

(s)
i (x) sinωt で与えられるなら，(Y22’)を考えて次を得る．

f
(c)
i = µ

∑

j

(
∂φi

∂xj
+
∂φj

∂xi

)
nj + λ(∇ · φ)ni + ωη

∑

j

(
∂ψi

∂xj
+
∂ψj

∂xi

)
nj + ωζ̃(∇ · ψ)ni, (11a)

f
(s)
i = µ

∑

j

(
∂ψi

∂xj
+
∂ψj

∂xi

)
nj + λ(∇ · ψ)ni − ωη

∑

j

(
∂φi

∂xj
+
∂φj

∂xi

)
nj − ωζ̃(∇ · φ)ni (11b)

式 (Y31) と組み合わせて考える表面応力は (11)が自然である．

表面応力を φ と ψ にわけて考えられるか?
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(11)に物理的な意味はつくか? (10) は意味付けられそうである．実際，通常の等方弾性体方程式
では，変位 ũ = (ũ1, ũ2, ũ3)に対して表面応力の i方向の成分 f̃i は

f̃i = µ
∑

j

(
∂ũi

∂xj
+
∂ũj

∂xi

)
nj + λ(∇ · ũ)ni

で与えられる．

式 (Y31)を近似して得られる (Y44) (あるいは (1))に対する境界条件を考える．そのためには
(11)を近似すればよい．例えば非圧縮として ∇ · φ = ∇ · ψ = 0を仮定すると次を得る．

f
(c)
i = µ

∂φi

∂n
+ µ

∑

j

∂φj

∂xi
nj + ωη

∂ψi

∂n
+ ωη

∑

j

∂ψj

∂xi
nj , (12a)

f
(s)
i = µ

∂ψi

∂n
+ µ

∑

j

∂ψj

∂xi
nj − ωη

∂φi

∂n
− ωη

∑

j

∂φj

∂xi
nj . (12b)

従って

µ
∑

j

∂φj

∂xi
nj + ωη

∑

j

∂ψj

∂xi
nj が µ

∂φi

∂n
+ ωη

∂ψi

∂n
に比べて無視できる大きさであり, (13a)

µ
∑

j

∂φj

∂xi
nj + ωη

∑

j

∂ψj

∂xi
nj が µ

∂φi

∂n
+ ωη

∂ψi

∂n
に比べて無視できる大きさである, (13b)

と仮定してよければ，

µ
∑

j

∂φj

∂xi
nj + ωη

∑

j

∂ψj

∂xi
nj = µ

∑

j

∂φj

∂xi
nj + ωη

∑

j

∂ψj

∂xi
nj = 0 (14)

と近似される．したがって (4)が表面応力を表すと考えることができて境界条件 (5d)は妥当であ
るといえる．

仮定 (14)は，次のように表せる．
(
µ
∂φ

∂xi
+ ωη

∂ψ

∂xi

)
· n = 0 かつ

(
µ
∂ψ

∂xi
− ωη

∂φ

∂xi

)
· n = 0

⇔ µ
∑

j

∂φj

∂xi
nj + ωη

∑

j

∂ψj

∂xi
nj = 0 かつ µ

∑

j

∂ψj

∂xi
nj − ωη

∑

j

∂φj

∂xi
nj = 0.

⇔
∑

j

∂φj

∂xi
nj =

∑

j

∂φj

∂xi
nj = 0

(
∂φ

∂xi
· n =

∂ψ

∂xi
· n = 0

)
.

この仮定の物理的な意味は? この仮定 (13)は，仮定 (Y45)と大きく関係していると考えられる．
仮定 (Y34)(Y43)(Y45)から導出できるか?

5 考えるべきこと

• モデルの仮定をどこまで緩めるか．どのモデルを出発点とするか．

• P波 (疎密波) のとき，どのようにモデル化するか．
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• MRE で測定できる物理量は何か．φ, ψ を求めることは可能か?

• 係数 η, µが定数でなく，区分的に滑らか (微分可能)な場合を想定し，(1)から係数同定の式
を導けるか．平均値 (期待値)の形式でもよい．
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