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Numerical differentiation for the second order
derivatives of functions with two variables

Gen Nakamura®*, Shengzhang Wang?, Yanbo Wang ™!

& Department of Mathematics, Graduate School of Science, Hokkaido University,
Sapporo, 060-0810, Japan

b Department of Mathematics, Fudan University, Shanghai, 200433, P.R.China

Abstract

A regularized optimization problem for computing numerical differentiation for the
second order derivative of functions with two variables from noisy values at the
scattered points is discussed in this article. The authors give the proof of the exis-
tence and uniqueness of the solution to this problem, the construction scheme of the
solution is based on bi-harmonic Green function and the convergence estimate of
the regularized solution to the exact solution for the problem under a simple choice
of regularization parameter. The efficiency of the reconstruction scheme is shown
by some numerical examples.

Key words: numerical differentiation, Tikhonov regularization, Green function
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1 Introduction

Numerical differentiation is a problem to determine the derivatives of an un-
known function from the given noisy values of the unknown function at the
scattered points. Hereafter, for simplicity, we abbreviate this determination
of derivatives by numerical differentiation from noisy scattered data.lt arises
from many scientific researches and applications, but it is an ill-posed problem,
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which means, the small errors in the measurement of the function may lead to
large errors in its computed derivatives ([7], [9], [14]). There have been many
approaches proposed ( [8], [9],[12]) for treating the numerical differentiation
problem.

A. G. Ramm proposed an approach for getting stable numerical differentiation
by using finite-difference methods in 1968[12]. Recently A. G. Ramm and A.
B. Smirnova gave the error estimate and presented some numerical examples
for this approach [13]. Their detailed study was given basically for functions
with one variable. The error estimate of this method is precise and optimal.
This numerical differentiation based on the finite-difference methods only gives
piecewise constant functions which lacks the smoothness.

On the other hand, M. Hanke and O. Scherzer proposed another approach
to the problem based on discrepancy principle for the least square method
combined with Tikhonov regularization finding the minimizer in natural cubic
splines [9]. They only considered it for functions with one variable. Y. B. Wang
et al. adopted the idea given in [9] to treat irregular grid and gave a simple
way to choose the regularization parameter. The byproduct of this method is
that it can identify the discontinuity of an unknown function from the noisy
values of the unknown function at the scattered points. This identification
of the discontinuity was used to find discontinuous solutions of Abel integral
equations [2] and edge detection of image [10]. The numerical results showed
that this method was quite efficient.

The higher order and two dimensional numerical differentiation along the line
of this method were given in [15] and [17], respectively. For the two dimensional
case, the new ingredient was that the variational problem for the regularized
minimization problem is solved using the Green function for the Laplacian
with Dirichlet boundary condition and a scheme for computing the first order
derivative was given in [17]. The numerical example showed that this method
was efficient. But in many applications, it is necessary to compute higher order
derivatives, for example, in the plate bending problem, the bending moments
are obtained from the second derivatives of the vertical displacement of the
plate [1], so in this paper we will give a numerical differentiation of the second
order derivatives from noisy scattered data. The error estimate for our method
has the form and order similar to that of [13] in terms of the noise level of
the data and size of the irregular grid. But the order in terms of the size of
irregular grid is slightly worse than that of [13]. Comparing these two error
estimates of [13] and ours, we have to be aware of the difference that the
former is for functions with one variable and the latter is for functions with
two variables.

The paper is organized as follows: in section 2, we describe the problem in
detail and prove the existence and uniqueness of the solution; in section 3 we



give the convergence estimate of the regularized solution to the exact solution
for the problem by error estimate; the numerical examples are given in section
4; in section b, we discuss the efficiency of this method by analyzing the results
of the numerical examples in section 4; we give the algorithm for computing
the Green function in Appendix.

2 Problem and some results

Suppose that @ C R? is a bounded domain with C? boundary and ¢ = o(x)
is a function defined in Q. Let N be a natural number and {z;}¥, be a group
of points in . We assume that € is divided into N parts {Q;}Y,, and there
is only one point of {z;}¥, in each part. For simplicity we also assume that
the areas |§2;| of all ©;(1 < i < N) are same. We denote by d; the diameter of
Q; and let d = max{d;}.

We will discuss the following problem:
Suppose that we know the approximate value g; of g(x) at point x;, i.e.

|6; — o(x")| < 9, i=1,2,---,N, (2.1)
where 6 > 0 is a given constant called the error level.

We want to find a function f,(z) which approximates function g(x) such that
Hf* - QHH2(Q) is small and

-~ ol =0
Assuming that there are two functions ¢(z) € H/2(0Q) and ¢(x) € H3/%(09)

satisfying [|6(z) — 0(a)l| g0y < 0 and |lp(z) — Ao(@) [gaseny < 0, we
treat this problem as the following optimization problem by using Tikhonov
regularization method.

Problem 2.1 Define a cost functional ®(f):

N
> (f(a?) = 0j)* + all A% flla), fEH

J=1

1
N

where H = {f|f € HYQ), flon = ¢, Nflaa = ¢}, and a > 0 is a reg-
ularization parameter. Then, the problem is then to find f. € H such that

O(f.) < O(f) for every f € H.

Then we will prove the existence and uniqueness of the minimizer of Problem
2.1.



Theorem 2.2 Suppose that f, € H is the solution of the following variational
problem:

Jy o = = G S () ~ o) (22

for all h € H = {h|h € HX(Q), hloq = Ahlog = 0}. Then f, is the minimizer
of Problem 2.1. Moreover, the minimizer of Problem 2.1 is unique.

Remark 2.3 We will prove the existence of a solution of (2.2) later in The-
orem 2.4.

Proof of Theorem 2.2. For any f € H,let h = f — f,, then h |9go= 0 and
Ah |ao= 0. It is easy to have the following equations:

B(f) = B(£) = () — L) + 1.67) - 28)
+a [ 222 = (87F))da (23
=1 + ol

and
I, = ;72:1 2(fu(2?) — g;)h(z?) + h*(27).

By the definition of f,, we have

= [ (8% = (82F)%)de = | A% ey +2 | A% A2 da

2 .
—HAQhHLZ - awz ) — 0;)h(27).

J=1

Substituting the equations I; and I into (2.3) gives
1 N

O(f) = ®(fe) = 5 20 (@) + all A% f = A fullfa) = 0.
j=1

Thus, f. is a minimizer of Problem 2.1.

If there is another f* € H minimizing Problem 2.1, denote g = f* — f,, then
function g satisfies: [ (A?g)*dz = 0 and g|sq = 0, Aglag = 0. Hence, g(z) =0
for v € Q. So f* = f.. Therefore, the uniqueness of the minimizer of Problem
2.1 has been proven. O

To solve numerical differentiation problem, it is necessary to provide a scheme
for constructing f,. For that, by an a priori argument using Green function of



bi-harmonic operator, we construct f,. It will be shown as a theorem that the
constructed f, is the solution of (2.2).

Let’s recall the definition of the bi-harmonic Green function before going into
the construction. Function G(z,y) with fixed y € € is called the bi-harmonic
Green function if it satisfies

N2G(x,y) =d(x —y) inQ
Gloa =0, A;Glaa=0.

We can obtain G(z,y) by solving

F(z,y)laa =0

and

DG, y) = F(r,y)  inQ
G('Iay)bﬂ =0.

We denote A\; as the Laplacian operator for the first argument, and A, as
the Laplacian operator for the second argument. Since G(x,y) = G(y, x) and
F(z,y) = F(y,z) for z,y € Q, we have

AQG(yvx) = AlG(‘ra y) = F(J?, y) = F(y7 I) = AIG(yJ l’) : (24>

Now we will propose a scheme to obtain the solution of the Eq. (2.2). Taking
h = G(z,y) in (2.2) and using the definition of Green function, we obtain

_% é‘vzl (f*($j) - QNj)G(ﬁj, y) = /QO&AQf*([B) . AiG(x,y)dx
= al’f.(y).

Multiply the two sides of the above equation by G(x,y) and integrate it on 2,
we obtain by integrating by parts



Z (27) — g; /ij VG(x,y)dz
fu(x) - G(z,y)dz

_ /m LA xy>—§a<x y) - AF(x))ds()

SN /aa 88 G(x,y) - o(z)ds(x) — a/m ;VAIG(x,y) - ¢(z)ds(z)
+af.(y),

where v is the unit normal of 90 directed outside 2. Rewrite the above equa-
tion in the form:

\2\
>

o [ Dam)-eist) + o [ n,Gl2) - ol)ds(y).

Q Ov

By defining
/G (27, y x)dy, (2.6)
o) = |, (fyAyG@,x) Oly)ds(y) + /a D) elsty)  (27)
and
6 = () - ) (28)
(2.5) becomes
x) = Z: cjai(z) + b(x). (2.9)

Now the problem of constructing f, reduces to computing the coefficients ¢;
from g;, p(z) and ¢(x). From (2.8) and (2.9) we obtain

o= ) -8 = - ) - 5) . e
Let
aN +a(zh)  a(zh)  ag(zt) ay(z')
A ar(z?)  aN + ax(z?) az(z?) an(x?)
ay () as(x™)  az(a) aN + ay(x)



and

C1 p~1—b($1)

c 5o — b2
c— 2 b= P2 (%) ’

CN pn — b(a).

Then (2.10) becomes the linear equations Ac = b. Solving this equations, we
will obtain coefficients c¢;, which finishes the construction of f..

Theorem 2.4 Suppose function f. = S0 c;a;(z) + b(x) where a;(x) and
b(x) are defined in (2.6) and (2.7), {c;};2, is the solution of linear system
(2.10), then f. is the solution of (2.2).

Proof. For every x € 0f), from the definition of Green function, we know that
G(z,y) = G(y,z) =0 for y € Q. So

= /Q G(27,y) - Gy, z)dy = 0.

Assume that ¢ € H2(Q) is an extension of ¢ to Q and ¢ € H2(Q) is an
extension of ¢ over (), then integrating by parts yields

b(z) = d(x) (x€9N).
Thus we have f.(x)|aq = ¢(z).
We also have

Na;(z / G(2?,y) NG (z,y)dy =0 (x € 092)

Since

:/<5 )ALG(y, x) dy—/AGy,x)Aé( )dy
+/ y) A, Gy, v)dy — /Gy, JAS(y)dy  (z € 09),
then we will have using the definition of F(z,y) and (2.4),

Ab(a) = Ad(a /la (284G (. 2) Ad(y)dy
+/ +(DyG(y, x))dy — / NGz, y) ANd(y)dy

= Ad(a /A? WAy + [ Py) D26, y))dy
ol e,



Thus we have Af,(z)]sa = ().

Moreover, from the definition of a;(x) and b(x), we know that for every x € Q)
Naj(r) = /QG(:cj,y)AiG(x,y)dy = G(27,x) (2.11)

and
£2(w) = £p() — [ D2G(y)Bey)dy = Spla) - Bpx) = 0. (2.12)

Since G(2?,z) € L*(Q) , so we have A? f,(z) € L*(Q2). From the well-posedness
of the Possion equation with inhomogeneous Dirichlet boundary condition, we
know f, € H*(2). Furthermore f, € H.

For any h € H, we have

N
/AQf*Azhd:v:/chG(xj,x)Azh(:v)dx
Q Q-

_ f:l ¢; ( /Q AG(, ) Ah(z)dz — /8 ) Ah(x)mgj’@ds(x)

i OAh(x)
+ o G(x ,x)ayds(x)>

:jécj (/Q AQG(xj,x)h(a:)dx—/ h(x)MGa(ij’x)dS(x)

So f. is the solution of (2.2). This completes the proof. O

The solution of the linear equations exists and is unique, because if we assume
0; =0,i=1,--- N, and ¢(x) = p(x) = 0, then we know that there is only
one minimizer of Problem 2.1 | which is f.(x) = 0,z € Q. It is obvious ¢ = 0
is a solution of Ac = 0 and if there is another ¢ satisfying Ac = 0, then we
will have a function f # 0 which is also a minimizer of Problem 2.1. This is a
contradiction so the homogenous linear equations only has a trivial solution.
Thus the solution of the linear equations exists and is unique.



3  Error estimate

In this section we will give a convergence estimate for our proposed solution
under a priori choice of the regularization parameter. The proof will use the
following lemma.

Lemma 3.1 Let E be a bounded domain in R™ with Lipschitz boundary OF,
u e WY (E), and suppose that n < p < oo , then

[u(z) = u(y)] < Kz —y|' "% ||ull1p0
where K is independent of u.
This lemma can be seen in page 27 of [6].
According to the result of [3], we choose the regularization parameter o =
2. Such choice has been proven quite effective (see [16]). We give the error

estimate in the following theorem:

Theorem 3.2 Suppose f. is the minimizer of Problem 2.1 and o € H*().
Let e = f, — o and choose o = 82, then we have the following error estimate

| Aell g2y < Ly d? + Lad3, lell ) < Lad + Lo
||V€||L2(Q) S L5d% + Lﬁé%, ||VA€||L2(Q) S .[/7di + Lg(gi

where L; are constants which depend on Q, |9l gr2(a0), |/ g3/200) and |2 0l| 2(o)-
Proof. For simplicity, we use the abbreviation ||-|| 12 = ||-|| .2(q). Since 6% || A? f,||72 <

D(f.) < ®(0) < 62+8%||A%0||32, it is easy to see that [|A?e| 2 < 142||A%0|| 2.
Also, from the well-posedness of the boundary value problem

N?’e=¢g in Q
e=k, Ae=/{ on 0N

(3.1)

with given g € L2(2), k € H/2(0Q), ¢ € H3%(9Q) and the continuity of the
trace operator, there are constants C; and Cs such that || Zel|r2(a0) < C1 and
|2 Aellr2p0) < Cs. Hereafter, C;’s are general constants which may depend

on {2, H¢HH7/2(39)> HSDHHS/Z(aQ) and HA2Q“L2'

So, by |le|lzz < 8, | ez < 6,



1 Ae|2: = / |Aelda

[ ne-Feas - 9 neds + / A2 - edz
50 ov aQ v

< llellz= - 1A%l 2 + C1d + Cad.

Here, note that the general constants C;, Cy can be different in each estimate.
We rewrite ||e]|z2 as

lle]|3- :/5262<.Z')d£€ = é/ﬂ e*(x)dx
:é/g e(z)(e(z) — e(x'))dx +é/ﬁ e(z')(e(z) — e(z'))dx
+i/ﬂz e(z%)dx

=13+ 1, + I5.

Now we estimate I3, 4, and I5.

=3 |, el@et@) = eadr <3 [ fela)l(e(w) = e(alds
<3 [, Gile =1 F leluple@)lde < @' Cullelhy [ le(@)lds

_n 1
<d " Cilellupllell 2 (121)2

where [Q)] is the area of €. The second inequality is obtained from Lemma 3.1
with n = 2. We may set p = 4, then

I < dxCy(120)2 lellvallell =
From the imbedding theorem of Soblev spaces we know that W2?(Q) —
WH4(Q), which means, there is a constant () independent of e satisfying
lell1.4 < Chlle]|2,2- By the well-posedness of the boundary value problem for
the Possion equation with inhomogeneous Dirichlet condition,

H€||2’2 S 01HA€||L2 -+ 02(5
Hence, we have I3 < Cydz|le|| 12 (|| el 12 + 6).

By the same way, we have

L=y / EGLOREGITEDY / Je(a)]|(e(x) — e(a'))|de

2 -

ke

<d201|re||14z/| de) = d5Ci el

10



Since ®(f.) < ®(p), we have

T LU = < F(+ %)
So
R 1 X . _
7 2 el € 5 306%) = il + I~ o))
1 Y ,
<\ v D) — gl 4+

<O(y/1+4]|A%0]2+1).
Hence, we have I, < Cyd26(]|Ae| + 6).
The estimate of I5 is simple. In fact
N ) N ) 1 N )
[522/ e*(x")dr = 262($Z)/ de < —|Q]- > e*(z")
i=1 Q; i=1 Q; N =
2 N : ) -
< QD ((fela') = 60)* + (60 — o(2))?)
i=1
<2YQI6A(2 + | A%0]2) = 1.
From all the estimate for I5 to I5, we can conclude that
lell3> < Cidz|le]l (| Aell 2 + 8) + Cad?d]| Ac| 2 + C50™.
Then, we have

lell 2 < Crd? (|| Aell2 + 8) + Cod0% || Ae| 2 + Cs0
< Cydz || Ael| 2 + Cod.

Here, we have some of the estimates in the theorem:
Q|2 < Cyd? + Cod?

and
||€||L2 S Cld + 026
Also, since

1Ve|2 :/QVe Vedr

ov
< lellzs - [ Aellzz + v,

:—/Ae-edx+/ e-gedS
Q a0

11



and
INAE :/ VAe-VAedx
0

:—/ A Nede+ | De- 2 Aeds
Q 90 ov

< || Ae||z2 - |A%€]| 2 + Ci6,

we have

Ve[ < Cidi + Cy82

IV A2 < Chdi + Cadi .
This completes the proof. O

Remark 3.3 In this paper, for the simplicity, we assume that the areas of
all Q; are same. In the real application, this condition may be not easy to be
satisfied. But if we denote V1 = max'{||} and V2 = min{|Q;|} and let {3
18 bounded with some constant, then we still have the same error estimate.

Remark 3.4 In Theorem 3.2, we used Lemma 3.1 to estimate I3 in which
we chose the parameter p to be 4. Actually we can choose any p satisfying
2 < p < o0o. And we can still use the imbedding theorem of Sobolev spaces

W22(Q) — WP(Q). The result will be

|Ae||z < Lip - d' ™% + Loyo2, lellze < Lapd®™ 7 + Luyd
IVellz2 < Lspd? 7 + Leyo2, IVAe|lr2 < Lypd? v + Lgy67

where Ly, are constants depending on ||¢HH%(69), H(pHH%(aQ) and Q, || A%0|| 12

and p. So when we choose a larger p we will get a better convergence rate.

Remark 3.5 If Q is a polygon, (3.1) with k = ¢ = 0 is well-posed (see [6]
Theorem 4.4.1.3). Since k and £ in (3.1) have extensions f. — o € H*(2) and
A(f. —0) € H*(Q), we can reduce (3.1) to the case with k = £ = 0. Also,
the Green formula and the properties of the Sobolev spaces used in this paper
still hold when ) is a bounded domain with Lipschitz boundary. Therefore, our
Theorems hold even in the case ) is a polygon. Our numerical examples in
the next section are given for the case €2 is a rectangle. We utilize this remark
for the examples.

4 Numerical examples

We provide numerical examples in this section.

12



We compute the Green function G by Fourier series for our construction.
The detail of the algorithm for constructing f, and its second derivatives is
presented in Appendix.

Let o(x1,23) be a two variable function given by
o(x1, xe) = sin(may) sin(2z2)  (x1, 22) € €,

where Q = {(z1,22) : 0 < 27 < 1,0 < 27 < 27}. We take o(zq,x2) as the
unknown function to compute the numerical differentiation of its second order
derivatives.

We generate the simulated noisy data as follows:

(1) Decomposite €2 into N elements denoted by ;(1 <i < N).

(2) In each element, we choose the center of 2; as the grid point and get
value g;(1 <1i < N) at each grid point.

(3) Add some noise d to g;, then we get the simulated noisy data g;(1 <i <
N).

We define a cut-off function x(z) € C*

1, xe
x(z) =40, x € 00
to<t<1),z€eQ\

with suppy C € and multiply the measured data g(z) by x(z), then we get
the value on grid points in our construction and the boundary value ¢ and ¢
become

o) = floa =0, ¢(x)=Aflaa =0.

Fig. 1. cut-off function x(z)
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Therefore, we only construct f,, ax%*m (x) etc. in €. The number of elements
in € is denoted by N'.

Fig. 2, 3, 4, 5 illustrate our numerical results for constructing the second order
derivatives with N’ = 202, § = 0.01.

The numerical results about constructing f., fizyazys feaozs aNd fiz 2, are illus-
trated in Fig. 2 , Fig. 3, Fig. 4 and Fig. 5, respectively. In Fig. 2-5, from the left
to right, the three figures correspond to the original function, the constructed
function and the constructed error in €)'

SO P
A AN

s RN ri"“\\\\\\\\\\\\\\
SR IR
TS S

W N\

P SANANANNY 5 .-“‘i\
SN S

B IAAVIMARRY A
s AT, .
A |

Ll Lk 220010

AN W
W

Fig. 5. function o4, 4,, constructed fiz,,, and constructed error
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Now we investigate how the relative errors depends on N’ and § (see Table

1-Table 5). We define the relative error &,, &y, . for constructed f,, &C%*Il
by

(S () — ofa?))?)

(=X(oai?)
(S04 (628 (@) — g (0)))

(Y (olai))?)”?

£ , & are defined in the same way.

fx —

1/2

f*zlzl

When ¢ is increased from 0.005 to 0.05, Table 1 presents the relative errors
for contructing f, and its three second order derivatives with fixed N’ = 202.

Table 2, 3, 4 and 5 present the relative errors when N’ being increased from
122 to 242 with fixed § = 0.005,0.01, 0.02, 0.05, respectively.

Table 1
Relative errors(%) with different noise level §( N’ = 202, fixed)

0 . Efer Chanes  Chae
0.005 4.7612  5.6660 4.0606 1.5112
0.01  6.4743 49706 7.5713  1.2032
0.02 11.2376 10.2852 14.0513  4.2602
0.05 32.1106 39.3511 43.7051 21.0809

5 Discussion and conclusion

In Fig. 2, 3, 4, 5, we can observe that the figures for the constructed functions
are very similar to that of the corresponding functions. Only by this compar-
ison, we can say our construction is quite good, but the figures are difficult

Table 2
Relative errors(%) with different numbers of grid points N'(§ = 0.005, fixed)

N' & foorer  Cfeagry  Eferyo
122 5.7855 4.2359 5.3461 0.9285
162 5.1353 4.2500 4.5373  0.8953
202 4.7612 5.6660 4.0606 1.5112
24% 45055 7.7803 3.7527 2.3465
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Table 3
Relative errors(%) with different numbers of grid points N'(§ = 0.01, fixed)

N & Efaier Efergey  Efeapm
122 92269 8.1107 11.4623 2.9345
162 7.3962 6.0563 9.0640  1.8404
202 6.4743 4.9706 7.5713 1.2032
242 59300 4.3590 6.2529 0.9724

E{i?;fije errors(%) for different numbers of grid points N'(6 = 0.02, fixed)
N' &ty Efmpey Efare
122 19.4912 20.2812 24.1990 10.2773
162 14.0671 13.5256 17.3932 6.2511
202 11.2376 10.2852 14.0513  4.2602
242 9.5989  8.4584 12.0134  3.1269
Table 5

Relative errors(%) for different numbers of grid points N'(6 = 0.05, fixed)

N & e Claney  Efene

122 52.5281 93.0336 106.9937 51.5658
162 40.4525 56.7802 63.8319  31.0793
202 32.1106 39.3511 43.7051  21.0809
242 26.3455 29.6180 32.8746 15.3715

to observe the precision of the constructed functions. Therefore, we should
investigate the relative errors.

In Table 1, N’ = 20? being fixed, we increase the noise ¢ from 0.005 to 0.01,
the constructed errors &, and &, . increase, but &, . and &, decrease
a little. When the noise is large than 0.01, the constructed errors grow quickly
with noise level increasing.

In Table 2, § = 0.005 being fixed, increasing N’ from 122 to 242, we can see
&r and &, decrease slowly, whereas &, . and &, . increase slowly.

From above phenomenon, we can say when noise level is very small such as less
than 0.01, increasing N’ cannot alway improve the precision of the constructed
functions. Even &,, , and &,, . increase slowly with N’ being increased. The
reason is that, the numerator in the relative error formula is square summation
of the difference between the exact value and the constructed value, when
noise is very small, the improvement in constructed functions f.,,,, and fiz,a,

16



by increasing N’ can not compensate the increase of error generated by the
number of the summation terms being increased.

In Table 3, § = 0.01 being fixed, if N’ = 122, the constructed errors are less
than 12%. With N’ being increased, the constructed errors for all functions
become smaller. When N’ = 24% the constructed error &y, is 5.9300% and
Efrarars Efenya, and &y, are less than 7%.

In Table 4 and Table 5, we take 6 = 0.02 and 6 = 0.05 respectively, and in-
crease N’ from 12’ to 24’ then the constructed errors for all functions decrease
gradually.

From Table 3-Table 5, we conclude that when § > 0.01, increasing N’ can im-
prove the precision of numerical differentiation for three second order deriva-
tives of p(x1,x5) by our method.

There is the fact that, by using the same noisy data, the constructed error
for the mixed derivative is much smaller than that for the other two second
derivatives. When N’ being increased to 242, the constructed errors are about
5 — 6 times of the noise levels. On the other hand, the constructed error for
the mixed second derivative is less than 3 times of the noise level.

These numerical results show that our method is quite efficient for comput-
ing numerical differentiation for the second derivatives of functions with two
variables from the noisy scattered data. Due to the memory limitation of our
computer, we could not take a larger N’ to make our numerical results more
precise.
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6 Appendix A: Proof of G(z,y) = G(y, )

Here we will give the proof that the solution G(z,y) with fixed y € Q of
N:G(z,y) =0(z—y) inQ
G(2,y)|oa = DoG(,y)|on =0

satisfies G(z,y) = G(y, ), for any x,y € Q.

Proof:  Suppose x,y are two fixed points in 2. We define Bs(y) := {z||z —

y| < (S,Z S Q}, Qg = Q \ (Bg(l’)UBg(y)), F(;(l‘) = 835(13) and F(;(y) =
0B;s(y). According to Green formula, we know that for any u,v € H*(),

18



Aiu-vdaz:/ iA:,;u-vals— JAVRTI 0 vds
Qs d

Qs Oy Qs ov,

+/ iu - Ayuds
Qs Oy

0
- u-—ANds+ | u-Alvde
00; Oy Qs

Hence

0
AQ . d =
o zG(z, x) G(z, y) A /6

Qs OV,

AN,G(z,x) - G(z,y)ds

0 G(z,x) - N,G(z,y)ds

9]
- N,G(z,x) - —G(z,y)ds + b0 30

a0 ov,

9 2
- 99 G(Z, l‘) ) ail/ZAZG(Z’ y)dS + Q4 G(Zv ZL’) ’ AzG(Z, y)dz

= 1,(0) — I2(d) + I3() — 14(0) + o, G(z,z) - A2G(z,y)dz

Since y, x & s, for any z € Qs with 2z # x,2 # y, A2G(z,y) = 0, A2G(z,2) =
0.

Hence we have
L(0) — 1>(0) + I3(6) — 1a(6) = 0.

Next we will prove that lims o I5(5) = 0,lims_o I3(0) = 0, lims_o [1()) =
G(z,y) and lims_o 14(6) = G(y, z).

Let F(z,z) :== A,G(z,x), then

N, F(z,2) =d(z — x) in
F(Z,J])|aQ :O

Hence F(z,2) € C™ for z € Q\ {z} and F(z,2) ~ 5=In|z — z| (z — z). Since
G(z,x) = G(z,y) = N.G(z,2) = AG(z,y) =0 (2 € 09)

h(0) = /Fé(l") " /ra@) '

Here

/ ! JURITE 9 (e y)dz = /2”(51 52 ¢s,0)
~— nlz—ux 2,y)dz = — no)—
Ts(@) 27 Jrs(a) ov, Y 21 Jo ov

and%G(z’, y) is bounded, so [r,(,) — 0 when 6 — 0.

As for [r ()
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/F(;(y) F(Z,ZB)aG(z,y)ds:F(y,x)/ 4 G(z,y)ds

aI/z Ts(y) aVz

0
+ F(z,z) — Fy,x
[ (F(ea) - Flya)

G(z,y)ds.

Here,

0 1 f2n 5
Gz, :/ F(z, Nf/ d9/ Inrdd — 0
/r§<y> o, OB = fp T g [y A8 ) i

Since A,G(z,y) = F(z,y) ~ 5-In|z —y| € L? near y, by the interior reg-
ularity for the Poison equation, we have G(z,y) € H? near y and hence
a%zG(z,y) € H2 near y. So

0
/F&(y)(F(z,x) — F(y,a:)a—yzG(z,y) —0 asd—0

thus we have
LL(§) —0 asd—0

By the same way , we have

I30) -0 asd—0

From the boundary condition for G,

L(0) = /a 0 F(z,2)G(z,y)ds = (/ + 0 F(z,2)G(z,y)ds.

Qs aVz Ls(x) Fé(y))ayz

Hence we know that F(z,z) € C* near y, and G(z,y) € H* which means
G(z,y) € C'7¢. So we have

0
/Fa(y) 3VZF(Z’x)G(Zay)ds —0 (6—0).

As for [p,(,), we have

0 9
Lo i FE0GGE0 =Gl [ 2 F()
b (G - Gla) P ().
Fg(x) ! ) al/z )
Since F(z,z) ~ 5=In|z — x|, ;= F(z,2) ~ m, G(z,9)—G(z,y) = O(|z — )
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for z near x,

0
/F6($)(G(Z,Z/) — G(z, y))aVZF(z, z)ds — 0(8 — 0)

and

2

/ O Pz, 2)ds ~ = / T 5610 = 1(5 — 0)
z,x)ds ~ — = —0).
Ls(z) 8”2 ’ 0

Thus I,(0) — G(z,y) as § — 0.

By the same way, we can prove that I,(§) — G(y,x) as § — 0. This completes
the proof.

7 Appendix B: Algorithm of computing G(z,y) and the second or-
der derivatives of f,(x)

Assume Q = (0, L) x (0,27) and fix y € Q. The problem of solving

AN2G(z,y) =0(x —y) inQ
G(z,y)]on = DeG(2,y)|o0 =0

can be transformed into solving

{ N F(x,y)=0(x —y) in Q

F(z,y)|oa =0

and
NG(zyy)=F(r—y) inQ
G(z,9)|aq = 0.

Define

k‘lmcl . kgl’g

7 sin =,
where = (x1,23),k = (k1, k2). Then, by a direct computation, F'(z,y) and
G(z,y) are given by

ug(x) = sin

]{?171'3171 . kgl’g

F(fc,y)ZXk:pk(y)U(x)IXk:pk(y)sin 7S

G(z,y) = Xk: i (y)ur (),
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where (2)
—up(
Pi(e) =
(G + )%
—pi(y) ur(y)
ar(y) = ;) = T2 2 .
FE+H EF 5%
So the basis functions can be computed as following

)= [ 2 actya) oy + [ 2 ctya) ey

Q Ov

2 2 2
__ kim” ke or O

¥ ; () /m Sun(y) - o(y)dy
=1(z) + J(x).

Now we divide 02 into four parts: I'y : (0,L) x 0;Ty : L x (0,27); 3 :
(L,0) x 2m; Ty : (2m,0) x 0, and we denote the integral of I, J on each part as
Il, IQ, 13, I4, Jl, JQ, Jg, J4. Then b(l’) == Il + IQ + Ig + [4 + Jl + JQ + J3 + J4 ==
Zk(llk + Log + Isp + Ly + J1p + Jog + 3 + J4k) and each Iy, and Jy, are given
as follows:

ko L kym
Ly = —pk(m)g/ sin lLyl ¢(y1,0)dyr,
ko 2 . k17Tyl
Jik = —C]k(x)?/ s I (ylao)dyla
ki 2m ko
Loy, —pk(ﬂf)l?(—l)kl/o sin *yz (L, y2)dys,
klﬂ- kl 2Tl' k
Jor = Qk<x>7 —1) /B sin 51/2 ©(L,y2)dys,
k kym
L = pela) 5 (~1)* ["sin =25 o1, 2m)dy,
k L ki
I = qu(@) 5 (1) [sin =7 (g, 2m)dys,
klﬂ- 27rO 9
Ly, = —pk(l‘)f/o S —1Y2 ¢(0792)dy2;
ki 21 )
Ju = —Qk(x)lf/o sin —y - ©(0,y2)dy2
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Then the algorithm to compute the second order derivatives of f.(x) is given
as follwos.

We immediately have

2 2,2

() = =B gy (),

2

st () =~ o),

62

ot (1) = —krkag, ().

62 . -

Hence, oo (T, 277) = X2y, le§ ar(7)qr.(27),

aizgi«g (z,27) = ¥ — % S (1) i (2),

82 .
8x1g]x2( ,al) =3, kfrk;%( )ar(x?).
Since for
b(x) =0, @(x)=0, x €0
we have
9%
Ferom — O
9% _
Oxo0x2 )
9%
O0r10x2
Therefore
2 fu o2
2L () = T ¢ en = 0 ¢ Xk — B g () gu (7)),
921, 52
ng(x) - Zjv 1 Cjangfm = Zj—l Cj 2k —2%%( z)qr (7)),
921, 92
st (@) = T gy = Lot ¢ Tk B an(@)au(a?).
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APPLICATION OF NUMERICAL DIFFERENTIATION TO
DETECTING AN EARLY STAGE BREAST CANCER BY MRE

G. NAKAMURA, S. WANG AND M. SUGA

ABSTRACT. As an application of the numerical differentiation, we propose a
method for an approximate identification of the early stage breast cancer by

MRE.

1. INTRODUCTION

Numerical differentiation is a problem to determine the derivatives of a func-
tion from some input data on scattered points. It arises from many scientific re-
searches and applications. The main difficulty is that, it is an ill-posed problem,
which means, the small error of measurement will cause huge error in the computed
derivatives ([7], [9], [14]). The Tikhonov regularization for treating the numerical
differentiation problem has been shown quite effective ([5], [7], [11]). A simple but
very useful solution for the one-dimensional case based on Tikhonov regularization
method has been developed in ([17], [9]). For the two dimensional case, a scheme for
computing the first order derivatives is given in [18] and the second order derivatives
is given in [12].

A counterpart of this method is that it also gives a way to detect the discontinuity
in the derivatives of a function which we want to identify. This was shown by [17]
for the one-dimensional case.

In this paper, we extend this to higher dimensional case. As a very interesting
application of this method, we consider the inverse problem detecting an early stage
breast cancer by MRE. MRI equipped with some oscillation is called MRE which
provides the elastic shear wave field inside a human body caused by the oscillation
as a measured data. The importance of this method especially applied for detecting

an early stage cancer is as follow. For the early stage cancer the blood vessel inside

1991 Mathematics Subject Classification. 65D25, 45D05, 35R25.

Key words and phrases. Numerical differentiation, Green function, second order derivative.
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2 G. NAKAMURA, S. WANG AND M. SUGA

the cancer is not much developed. Hence, MRI which detects the distribution of
the hydrogen molecule is not effective. However, MRE can measure the stiffness
of the cancer which is quite different from the surrounding tissue. The paper is
organized as follows: in section 2, we state and review the numerical differentiation;
in section 3, we state and prove a theorem showing that the scheme of the numerical
differentiation can detect the discontinuity in the derivatives of a function which
we want to detect; in section 4, we applied the the results in section 2 and 3 to
detect the early stage breast cancer.

Not only for detecting the early stage breast cancer, our numerical differentiation
can also be effectively applied to edge detection for image analysis and has big
possibility to apply for identifying the crystal growing inside a liquid solution.

In our rest of our paper we describe everything in the 2 dimensional case for

simplicity, it remains true for the higher dimensional case.

2. STATEMENTS OF THE PROBLEMS AND REVIEW OF THE KNOWN RESULTS

Suppose that Q C R? is a bounded domain with a boundary 9§ of piecewise
C? class and y = y(x) is a function defined in Q. Let N be a natural number
and {z;}}¥, be a group of points in ). We assume that ) is divided into N parts
{Q;}Y,, and there is only one point of {z;}¥ ; in each part. For simplicity we also
assume that Q is a rectangle and all ); are congruent rectangles. We denote d; as
the diameter of ; and let d = max{d;}.

Suppose that we know the approximate value g; of y(z) at point z;, i.e.
|gl_y($z)|§57 i:1727"'7N7

where § > 0 is a given constant called the error level.
The first problem is to find a function f,(x) which approximates function y(x)
such that

dﬁl(l)’rglﬂo IV fi = Vyll2) = 0.

By using Tikhonov regularization method, we treat this problem as the following

optimization problem:
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Problem 2.1. Define a cost functional:
1
NZ )+ al|AflFe), f€H

where Hy = {f|f € H%(Q), floaa = ¢1} and a > 0 is a regularization parameter.
We have assumed that there is a function ¢i(x) € H3/%(9Q) satisfying |1 (x) —

Y(@)| gsr2a0) < 9.

The problem is then to find f. € Hy such that ©1(f.) < O(f) for every f € Hy.

The second problem is to find a function f,(z) which approximates function y(x)
such that

li ANfe — A =0.
d_}éf?_‘oﬂ I Yllz2) =0

Again by using Tikhonov regularization method, we treat this problem as the

following optimization problem:

Problem 2.2. Define a cost functional:

N
1 _
a(f) = 3 2 (Fl) = 5:)* + al A2 Fagqy f € Ho
j=1
where Hy = {f|f € H*), floa = ¢1, Afloa = ¢2} and a > 0 is a regularization
parameter.

The problem is then to find f. € Hy such that ®a(f.) < O(f) for every f € Hs.

For each Problem 2.1 and Problem 2.2, admit a unique solution f, and fy,.
Also, there are procedures to construct f, and f,.. We will give the computational
scheme for f, and f,.. When the regularization parameter « is taken as o = 62, the
error estimate for the solutions f. and f.. are given in [18] and [12], respectively.
Moreover, by taking a compact set K C Q and cutoff functions y; € C2¥(Q) such
that 0 < xx < 1, xx = 1 on K and replacing ¢; by xx(z;)@; for Problem 2.k (k=1,2),
respectively, we can take ¢1, ¢ = 0. This avoids the singularity which may come
from 92 at which 0fQ is singular. For the rest of the paper, by using this argument,
we let ¢1, g2 = 0.
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3. THE COMPUTATIONAL SCHEME

We first give the computational scheme for f,.
Let G.(z,z*) be the harmonic Green function with fixed z* € Q given as the

solution to

NyGo(z,2*) = §(x —2*) in Q

Gylan =0,
and define a,;(x) by
(3.1) ayj(x) = /QG*(xj,x*)G(z*,x)dx*.
By defining
aN + a.(x1) ayo(x1) asz(r1) - a.n (1)
A* — a1 (x2) alN + a.o(z2)  as(z2) - a.n(z2)
a1 (2N) ax2(TN) ax3(xn) -+ aN +a.n(zy)

we consider the linear system for c*

(3.2) A*c* = b*,
where
c1 U1
o — Co b — U2
cN YN

Then we can compute
N
(3.3) Fo(@) = 3 can (@) + b(a).
j=1

It is shown in [18] that the solution of this linear system for c exists and is

unique. Then, the following theorem gives how to construct f. ([18]).

Theorem 3.1. Suppose function f, = Zjv:l cjasj(x) where a.j(x) is defined in

(3.1), {cj}é-vzl is the solution of linear system (3.2), then f. is the solution of

Problem 2.1.
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Next, we give the computational scheme for f,..
Let G.x(z, z*) be the bi-harmonic Green function with fixed z* € Q given as the

solution to
NG (z,2*) = 0(x — %)  in Q

Gislon =0, DyGislon = 0.
We can obtain G..(x,y) by solving
A F(zyy)=0(x—y) inQ
F(z,y)loa =0
and
DpGas(zyy) = Fz,y)  in Q
Gai(2,y)lo0 =0,

and define a..;(x) by
A (2) = / G (2, 2")Gas (2™, x)da™ .
Q

(3.4)
By defining
aN‘i‘a**l(fEl) a**Z(ml) a**S(xl) U«**N(xl)
A — Qxx1(T2) aN + au2(T2)  @uas(T2) AxeN (T2)
a**l(xN) a**Z(xN) a**S(xN) O[N-I-a**N(l'N)

we consider the linear system for c*

(3.5) A**c** — b**,
where
c1 U1
C** _ €2 b** _ 192
cN N

It is shown in [12] that the solution of this linear system for c exists and is

unique. Then, the following theorem gives how to construct f.. ([12]).
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Theorem 3.2. Suppose function f.. = Z;\;l CjGssj(T) where a.j(z) is defined
n (3.4), {c;}L, is the solution of linear system (3.5), then f.. is the solution of
Problem 2.2.

4. DETECTION OF THE DISCONTINUITY IN THE DERIVATIVE

In this section, we consider Problem 2.1 again. For simplicity, we suppress the
subscript 1, for instance ®(f) = ®1(f).

Let ' C Q be a domain sharing the same partition {Q;}Y; of Q. That is
Q' = Uk, Q;,. For simplicity, we write Q) = Q;,. We also denote the area of Q by

Theorem 4.1. Suppose f. is the minimizer of Problem 2.1. Let o = 2. If
y € CQ(Q)\ H2(Y), then we have

(4.1) Afillp2y — o0 as 6 —0, N — oco.

Proof. We will basically follow the proof for the 1 dimensional case given in [15].

Assume that (4.1) is false. Then, there exist C' > 0 and
5™ =0, N™ = 00 (m — o0)
such that
(4.2) AL (6@ N2y <O (kym=1,2,--).
Since HZ(L2) is dense in CJ(Q), there exist y, € H3(Q) (k =1,2,---) such that
yeloa =0, gk = yllco <K' (k=1,2,-)
and

Squ||yk||L2(Q) < 0.
Without loss of generality, we can assume that §(*) ||Ayk|\%2(ﬂ) <l(k=1,2,--).
Now take k = N™ (m =1,2,---) and abbreviate §*) and y;, with k = N(™) by

6™ and y,y,, respectively. For simplicity, we will still use the same notations €;, Q)

even for the case the number of partition is N(™). Then, by ®(f.(-;0®*), N(™))) <
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P (ym),
st S0 (g 609, N ) — )2 < @(£.(5600, NOW) < (y,y)
(43) < Rar () =352+ 0D Ayl
< 2((0M) + zmye) + 0%
Hence, with the easy estimate
(4.4)
szzl(f*(w;g(k)’]\r(m)) iy < L ZN(m)(f*(%» (k) N(m) _ 5<k>)
< 2((6M)? + yyz) + 0

we have

(4.5)

1 L 1 L (k) L <k>
- 2( 0. §k) p7(m) - (k) ar(m) 5 2 - 3
N(m)zf*(xz’é ’N )§2N(m) Z(f*(xg,S N ) 2N(m Z
By

(%) (k)
(4.6) (W) )P <200 —ylxe)® + 2y(xe)® < 2((6M)* + 1910 @) -

Hence, by (4.4) to (4.6),

(4.7)

L
1 m 1 m
WZJCE(W;(S(M,N( ) < 4((5(k))2+m)+25( J+4((6"))? +||y|\00(9)) = A<oo.
=1

Now by the embedding H?(2) C C°(Q) which is true up to 3 dimension and the
definition of the Riemann integral, for any k (k = 1,2, --), there exists a positive

integer M (k) such that
|f2(x R N2 de < 24

if k, m are large enough. Hence, there exists a monotonically decreasing sequence

of positive integers my (k= 1,2,---) such that
[£2(; 0%, NP dw < 24 (k= 1,2, ).
Q/
Combining this with (4.2), {||f«(-;6®), N™)| 297} | is bounded. By the weak
compactness of H2(Q)'), the compactness of the embedding H2(Q)') C C°(Y’) and

taking a subsequence of { f,(-; 8 N(mk)) ° , if necessary, there exists f e H? Q)
such that

(4.8) [ £(5 8%, NO) — fll oy = 0 (k= 00).,
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Now, let 0 < € < 1. By the uniform continuity of y — f on € and (4.8), there
exist K € N such that for any k > K, we have

49) @) - f(2) — (o) — f(ae))] < Tm (w € 1< (L),

By using (4.9) first and then (4.5), we have
(4.10)
ly = Fliegn =it Jo, (@) = F(2))* da
<2 B S (wlwe) — Fla)?+e
<60 S (@) = g8 )2 + W = Fulwe 60, NOm))2
+(fulwe; 6, NOWY — f(a,))?)} + ¢
< 6]9Q(6%)2 4 12|Q|((6))2 + +6|Q6%) +6e2 +¢.

ooy

Hence, letting £k — oo, we have
ly — f||2L2(Q/) <Te.

Therefore, y = f € H2(Q'). This is a contradiction.

5. APPLICATION TO DETECTING THE EARLY STAGE BREATH CANCER

We propose a scheme for detecting an early stage breast cancer as an application
of Theorem 4.1. Note that we are assuming that there is a discontinuity in their
elastic properties between the cancer and the surrounding tissue. Of course this
is an artificial assumption. But to analyze the measured data obtained by Suga’s

experiment, we need to assume this. If we can succeed analyzing the experimental
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data effectively, we will consider the case that there is not any discontinuity. Again
for simplicity we describe the scheme for the 2 dimensional case.

Let Q be rectangle given in Section 2. We consider 2 as an elastic medium
with a compactly embedded inclusion D with C? boundary 0D. D corresponds
to a cancer in some part 2 of the two dimensional cross section of a breath. For
convenience we denote D by . and its exterior in 2 by _. We consider that the
stiffness (Ay, us) of Q4 is much larger than the stiffness (A_, u_) of Q_ and has
a clear jump across 0€);. Since we are interested in the early stage brest cancer
which is small, we can assume that the stiffness in Q4 is uniform. That is Ay, p4
are constant.

In the MRE measurement, the elastic wave field u is incompressible. That is
divE(u) = 0 for the strain tensor E(u) := 1/2(Vu + *(Vu)). So, we will neglect

divE(u). Then, it is easy to see that in 0, the wave field u, in ., satisfies
(51) ILL+AU+ + k2u+ =0 in Q+ s

where k > 0 is the wave number. Due to the discontinuity of the stiffness across €2,
the numerically simulated wave field w is continuous everywhere, but its gradient
Vu has a clear discontinuity at dQ, which means that it is not in H? in any
neighborhood of each point of 0€2..

Basing on these facts, our scheme for detecting 024 and the shear stiffness u
is as follows.
Step 1: Use Theorem 4.1 to detect 0€2.

Step 2: Use the result for Problem 2.2 to compute Awuy and then use (5.1) to obtain

B
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Recovery of the Elasticity and Viscosity from the
Interior Measurements

Gen Nakamura*

1 Introduction

In the method of dynamic MR-Elastography, it is reasonable to consider not
only the elastic properties of the material but also the viscous properties of
the material. There are various models to introduce viscosity into the elastic
equation. The simplest model is the so-called Voigt model.

That is, for any time ¢ > 0, and a point « = (x1,--- ,x,) in a bounded
domain  C R™(n = 2,3) whose boundary 92 is C*° smooth, the displace-
ment u(z,t) satisfies the equation:

0 0
P(a:)afuz — Z afk Z /\ilkm(w)ulm — Z 87]6 Zmlkm(x)&gulm = 0, (1.1)
k Im k Im

where
A } 8’LL1 + au]'
R Oxj;  Ox; ’

p(z) > 0 is the density, the elasticity tensor \;,,, and the viscosity tensor
Nitkm Satisfy the symmetries:

Aitkm = Mkitm = Nikml = Nimik»

Milkm = Tkilm = Tlikml = Mmik-

If we assume that the material is isotropic and incompressible, the Voigt
model (1.1) reduces to a scalar equation with shear modulus a(x) and vis-
cosity coeflicient b(z).

For simplicity, we assume n = 2 and a(z), b(x), p(z) € C®(Q) satisfy the
following condition

a(z),b(x), p(xr) >0 on €.

*Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan.



Then, the forward problem is as follow.
Forward Problem: ,
For any f € C?([0, 00); H2(02)), to find a solution u € C°([0, 00); H'(2))N
CL([0,00); L*(2)) to
p(x)0u — V - (a(2)Vu 4+ b(z)Vu) =0 in (0,00) x Q,
u=f on (0,00) x 09, (1.2)
u=u =0 on {0} x €.
It is well known the forward problem is well posed. We denote the
solution u to (1.2) by u = u(f). Moreover, we have the following:

Proposition 1.1. For anyug € HY(Q), u; € L*(Q), F € C°([0,00); L*(Q2)),

there exist a unique solution u € C°([0,00); H*(22)) N C([0, 00); L*(2)) to
p(x)du — V - (a(z)Vu + b(z)Vug) = F in  (0,00) x Q,
u=20 on (0,00) x 02, (1.3)
U= ug, U= U on {0} x Q.

Also, there exist a constant cg > 0 independent of ug, ui, F' such that

lu@®)ll () + 10l r2@) = O(e™) (¢ — o0). (1.4)

Based on the well posedness of the forward problem, we formulate the
own inverse problem as follow.

Inverse Problem:

Suppose a(z), b(z), p(x) are unknown. Reconstruct a(z), b(x), p(x) from
u(f) in (0,T) x Q for finitely many f’s, where u = u(f) is the solution of
(1.2).

Theorem 1.2. There is a reconstruction procedure for this inverse problem.

The details of the reconstruction procedure will be given later.

2 The dominant part of u(f)

Lemma 2.1. Let 0 < w < ¢g and f(z.t) = e “g(z) with g(z) € H? 09).
Then, (1.2) has a unique solution u € C°([0,00); H'(2)) NC*([0, 0); L2(R))
with dominant part e“*v(x) where v(x) solves

{ V- (aVv — wbVv) — pw?v =0 in Q, (2.1)

v=yg on 89,



Hence, we can say that we know v in  if we know u(e™“!g) in Q. From
now on we only consider w small enough so that

Y(w)=a—wb>0 on Q. (2.2)

3 Application of oscillating-decaying solutions

Lemma 3.1. By using finitely many oscillating-decaying solutions (abbrevi-
ated by OD solutions), and two different w’s, we can approrimately recover
a(x),b(z), p(x) and their derivatives on OS).

Hence we can approximately extend a(z), b(x), p(z) smoothly outside €
as positive functions.

Let’s take a box £ D Q. We round the corners of Q so that 9 is smooth.
We still use the same notation Q (see Figure. 1) to denote the domain we
obtain by this extension and assume that Q-0

7 <

. L

Figure. 1: Diagram of the domains

4 Recover a(z),b(z) and p(z)

For simplicity, we will work on Q) instead of Q2 to illustrate our reconstruction
procedure.

Lemma 4.1. Consider the solution v to (2.1) for w = w1,w2,ws and denote
the associated v’s by vy, ve,v3. By an algebraic manipulation, we can delete
the terms with p and obtain a first order equation with leading term:

{ wivaVuy - V(a — wib) — wivy Vo - V(a — wgb)}

2 2 (41)
wiv3Vuy - V(a — wib) — wjvi Vs - V(a — wsb)



Lemma 4.2. By using an OD solution we can continue a(x), b(x) from one
side of 2 by solving the Cauchy problem for a hyperbolic system with respect
to a(x),b(x). Here the initial surface is the side of Q@ mentioned above.

Remark 4.3. Of course, once we recover a(x),b(x) in a subdomain of Q,
we can recover p(x) in the subdomain if g # 0 on 0. This is because the
set of points at which v does not vanish is dense in Q due to the unique
continuation property if the partial differential equation given in (2.1).

Now we want to repeat this reconstruction procedure to recover a(x), b(x)
and p(z). B
For that, we consider some domain €21, such that 1 C Q, a(z),b(z), p(z)

are known in §~2\S~21 and its shape is analogous to that of Q. We note that §~21
does not have to contain 2. We again use OD solution to set up the Cauchy
problem for a hyperbolic system with respect to a(z), b(x) near one side of
21 which is parallel to the previous side of €. This OD solution needs the
full information about a(z),b(x), p(x) in ;. However, the dominant part
of its Cauchy data can be obtained from (a,b)| g -

Now, by solving the Cauchy problem for the partial differential equation
given in (2.1) with an incomplete Cauchy data (i.e. the previous dominant
part of the Cauchy data), we can generate a Dirichlet data ¢ in (2.1) such
that the associated solution v to (2.1) approximates the Cauchy data of the
OD solution on the previous side of ;. For solving the Cauchy problem
approximately with incomplete Cauchy data, we use the alternating method.

Since the solvability of the Cauchy problem of hyperbolic system only
depends on its coefficients and the coefficients are generated by the OD
solution, we can completely control the solvability if we assume some a
priori bounds on a(z), b(x).
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