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1 研究の背景・目的，内容・方法

1.1 目的

問題:

同種の粒子がN個ある体系を考える．粒
子間に働く相互作用力 vjk(x), 1 ≤ j <

k ≤ N を，遠方に散乱された粒子の観
測データから決定すること．

j

k

vjk

この問題に対し，理論的，数学的な側面からの研究を行い，各相互作用力を決
定するための公式を導くことを目的とする．

1.2 内容・方法

多数の粒子が存在しても，相互作用がなく，それぞれが独立に運動している場
合には，本質的には一粒子の問題であってあまり大きな困難はない．難しいのは
粒子が互いに力を及ぼしあっている場合であって，古典力学のときもそのような
多体問題を解くことは，ごく限られた特別な問題を除き，一般には不可能である
と言われている．量子力学においても同様であって，厳密な解を求めることがで
きる実際的な問題はほとんど無いと言われている．
今日では，多体問題に対する様々な近似法が考察されている．本研究ではその中

の一つ，ハートリーの近似法と呼ばれている方法で得られる方程式，すなわち時間
依存ハートリー方程式（TDH）及び時間依存ハートリー・フォック方程式（TDHF)

を利用し，粒子に働く相互作用力を決定することを解析した．これらの方程式は
非線形の方程式であり，全粒子に働く外力ポテンシャルは方程式の線形部分の係
数に，またそれぞれの粒子に働く相互作用ポテンシャルは非線形項の中に現れる．
今，vjk(x), 1 ≤ j < k ≤ N を j番目と k番目の粒子に働く相互作用力としよう．

このときN 個の粒子からなる系を記述するN 体 Schrödinger方程式は

i∂tΦN = −
N∑

j=1

Δxj
ΦN +

∑
1≤j<k≤N

vjk(xj − xk)ΦN , (1.1)

となる．ここで xj ∈ Rnは j番目の粒子の座標であり，Δxj
は n次元の xj 変数に

関する Laplacianである．
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Hartree方程式は波動関数ΦN を変数分離の形

ΦN(t, x1, · · · , xN ) = u1(t, x1)u2(t, x2) · · ·uN(t, xN ) (1.2)

とおき，これをN 体 Schrödinger方程式(1.1)へ代入，変分法を利用して導かれる．
こうして得られた uj (j = 1, · · · , N)に関する方程式は Hartree方程式と呼ばれ，
次のような方程式になる．

i∂tuj = −Δuj +
N∑

k �=j

(vjk ∗ |uk|2)uj. (TDH)

ここで ∗は合成積である．しかし，この波動関数(1.2)は対称性を満たしていない
という点で物理的に問題があった．例えば粒子がフェルミ統計に従う場合，波動
関数は anti-symmetriy propertyを満たさなければならない．この問題点を改善す
るために導かれた方程式がHartree-Fock方程式である．波動関数を Slater行列式

ΦN (t, x1, · · · , xN) = (N !)−1/2 det(uj(t, xk))1≤j,k≤N

でおき，(1.1)へ代入，変分法を用い，Hartree方程式を導いたのと同様の計算で次
のようなHartree-Fock方程式が得られる．

i∂tuj = −Δuj +
N∑

k �=j

(vjk ∗ |uk|2)uj −
N∑

k �=j

(vjk ∗ ujuk)uk. (TDHF)

ここで注意しておくべきことは，Hartree-Fock方程式の解 uj, j = 1, 2, · · · , N は
互いに一次独立でなければならないということである．もし uj = cukであったな
ら，Slater行列式はゼロになってしまいこれは物理的に意味のない波動関数となっ
てしまうからである．
本研究ではこれらの近似方程式から数学的に以下で定義される散乱データから

方程式の非線形項の中に現れる未知関数 vjk(x)を決定する公式を導くことを研究
した．
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

《 (TDH)と(TDHF)に対する散乱データ 》
vjk(x)は遠方で十分早く減衰しているとしよう．このとき(TDH)と(TDHF)の

解 ujは t → ±∞としたとき，自由解

i∂tU
(±)
j (x, t) = −ΔU

(±)
j (x, t), U

(±)
j (x, 0) = φ

(±)
j (x)

へ近づくことが期待される．実際，vjk(x)が次の条件

|vjk(x)| ≤ c|x|−σ, 2 ≤ σ ≤ 4 and σ < n (1.3)

を満たすとき(TDH)と(TDHF)の解は自由解へ近づくことがわかった．
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定理 1.1. 次を満たすような ρ > 0が存在する．任意の

φ
(−)
j ∈ Dρ := {φ ∈ H1 ; ‖φ‖H1 < ρ}, j = 1, 2, · · · , N,

に対し

lim
t→−∞

‖uj(·, t) − U
(−)
j (·, t)‖H1 = 0

を満たす(TDH)又は(TDHF)の解

uj ∈ L3(R; H1,q) ∩ L∞(R; H1), 1/q = 1/2 + 2/(3n)

が唯一つ存在する．さらにこの解は φ
(+)
j (x) = U

(+)
j (x, 0)とおけば

lim
t→∞

‖uj(·, t) − U
(+)
j (·, t)‖H1 = 0

を満たす．

写像 S : φ(−) → φ(+)は散乱作用素と呼ばれて次のように定義される．

Sj(φ)(x) = φj(x) +
1

i

∫
R

eitH0Fj(u(t))dt (1.4)

ここで φ(±) = t(φ
(±)
1 , · · · , φ

(±)
N ) であり Fj(u(t))は方程式の非線形項を表す．具体

的に書くと，Hartree方程式(TDH)の場合は

Fj(u(t))(x) =

N∑
k �=j

(vjk ∗ |uk|2)uj, (1.5)

となる．ただしu(t)はHartree方程式(TDH) の解である．Hartree-Fock方程式の
場合は

Fj(u(t))(x) =

N∑
k �=j

(vjk ∗ |uk|2)uj −
N∑

k �=j

(vjk ∗ ujuk)uk (1.6)

となる．u(t)はHartree-Fock方程式(TDHF)の解である．
関数の集合 {Sj(φ)(x), φj(x)}, j = 1, · · · , N を散乱データと呼ぶことにしよう．

ちなみに上記の定理はMochizuki [5]の結果の応用である．類似の結果はWada [9]

でも得られている．
さて，問題を定式化しよう．

問題：{Sj(φ)(x), φj(x)}を与えられた関数の集合とし，未知関数 vjk(x), 1 ≤ j <

k ≤ N を求めよ．言い換えると Sj(φ)(x)と φj(x) を既知関数として，積分方程
式(1.4)を vjk(x)について解く．

3



1.3 背景

Hartree方程式とHartree-Fock方程式は非線形の方程式である．従って，ここで
考えている問題は非線形方程式に対する逆散乱問題である．これまでこの問題に
関しどのようなことがわかっていたかを簡単に紹介する．

1973年, Morawetz-Strauss [6]は次のような非線形Klein-Gordon方程
式

utt − Δu + m2u + gu3 = 0, x ∈ R3 (1.7)

の逆散乱問題を考えた．ここでmと gは正の定数である．彼らは，
この方程式に対する散乱作用素から定数 g が一意的に決定できる
ことを証明し，次のような公式を導いた．

g = lim
ε→0

1

6ε4
W [S(2εU), S(εU)].

ここで

W (f, g) =

∫ [
f

∂g

∂t
− ∂f

∂t
g

]
dx

であり，Uは線形Klein-Gordon方程式の自由解である．この結果
によりはじめて非線形方程式に対する散乱作用素は非線形部分の
定数係数を一意的に決定できることがわかった．

1974年, Strauss [8]はこの結果を変数係数を持つ非線形 Schrödinger

方程式と非線形Klein-Gordon方程式へと拡張した．具体的には，
次のような非線形 Schrödinger方程式

i
∂u

∂t
= H0u + V (x)|u|p−1u, (t, x) ∈ R ×Rn,

ここでH0 = −Δであり， pは適当な条件をみたす整数である，に
対し V (x)が対応する散乱作用素から次の公式で決定できること
を証明した．

V (x0) =
lim

λ→∞
λn+2I[φλ]∫

R

‖e−itH0φ‖p+1
Lp+1 dt

, for any φ ∈ H1 ∩ L1+1/p.

(1.8)
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ここで φλ(x) = φ(λ(x − x0)), x, x0 ∈ Rnであり，

I[φ] := lim
ε→0

i

εp
((S − I)(εφ), φ) (1.9)

である．

1997年以降， Weder ([13], [14], [17], [15], [16], [18], [19], [20]) はこれ
までの結果をより一般の非線形Schrödinger方程式と非線形Klein-

Gordonへと拡張した．散乱作用素は非線形部分の係数のみなら
ず，線形部分の係数をも決定できることを証明し，さらにそれら
を求める公式も導いた．

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

これまで紹介してきた結果はいわゆるべき乗型といわれる非線形項を持つ方程
式に対してである．これらの結果のHartree型すなわち (v ∗ |u|2)uの形を持つ非線
形方程式の逆散乱問題は ([10], [11], [12])で研究されている．べき乗型の場合と事
情がことなり，Hartree型非線形項の vを具体的に求める公式はまだ得られていな
い．ただし，特殊なケースであるが，v = λ|x|−σの場合は [12]の中で公式が得ら
れている．具体的には，次のような方程式

i∂tu = H0u + λ(|x|−σ ∗ |u|2)u, H0 = −Δ, λ > 0, (1.10)

に対し，散乱作用素 Sから一意的に σと λを求めることができ, それらは次の公式
によって求めることができる．

σ = 2n + 2 + log
T [φe]

T [φ]
, (1.11)

λ = lim
ε→0

i

ε3

‖(S − I)(εφ)‖H1

‖
∫
R

eitH0(|x|−σ + |e−itH0φ|2)e−itH0 dt‖H1

, ε > 0. (1.12)

φ ∈ H1は任意の関数である．T [φ] = lim
ε→0

i

ε3
((S − I)(εφ), φ), φe(x) = φ(ex)である．

本研究はこの結果を物理で本来得られている Hartree方程式及び Hartree-Fock

方程式の場合へ応用することを考察し，以下のような結果を得た．
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2 結果・成果
粒子が 3個の場合で相互作用力が以下のような形で書けている場合を考える．

1

3

λ3|x|−σ3

2 λ2|x|−σ2

λ1|x|−σ1

{
vj(x) = λj|x|−σj , λj ∈ R,

2 ≤ σj ≤ 4 and σj < n,

(2.1)

j = 1, 2, 3.

Sjを各方程式に対する散乱作用素とする．また

Tj [φ] := lim
ε→0

i

ε3
([Sj − Ij ](φ), φj)L2 (2.2)

とおく．ここで φ = (φ1, φ2, φ3), Ij(φ) = φj であり，(·, ·)は L2(Rn)内積を表す．
さらに，Υ は Fourier変換したものが C∞

0 (Rn)となるような急減少関数の集合と
する．

2.1 Hartree方程式の場合

Hartree方程式(TDH)の場合には次の結果を得た．

定理 2.1. 任意の 0 	≡ φj ∈ H1, 1 ≤ j ≤ 3と任意の 1 	= R > 0に対し，次の公式
が成り立つ．

σ1 = 2n + 2 + logR

(
T1[φR] + T2[φR] − T3[φR]

T1[φ] + T2[φ] − T3[φ]

)
,

σ2 = 2n + 2 + logR

(
T2[φR] + T3[φR] − T1[φR]

T2[φ] + T3[φ] − T1[φ]

)
,

σ3 = 2n + 2 + logR

(
T3[φR] + T1[φR] − T2[φR]

T3[φ] + T1[φ] − T2[φ]

)
.

6



ここでφR(x) = φ(Rx)であり，

λ1 =
1

2a1
(T1[φ] + T2[φ] − T3[φ]),

λ2 =
1

2a2
(T2[φ] + T3[φ] − T1[φ]),

λ3 =
1

2a3
(T3[φ] + T1[φ] − T2[φ]).

さらに

a1 =

∫
R

∫
Rn

(|x|−σ1 ∗ |U1(·, t)|2)(x)|U2(x, t)|2dxdt,

a2 =

∫
R

∫
Rn

(|x|−σ2 ∗ |U2(·, t)|2)(x)|U3(x, t)|2dxdt,

a3 =

∫
R

∫
Rn

(|x|−σ3 ∗ |U3(·, t)|2)(x)|U1(x, t)|2dxdt

である．

2.2 Hartree-Fock方程式の場合

Hartree-Fock方程式の場合には次のような結果を得た．

定理 2.2. 以下の公式が成り立つような

φ ∈ B := {φ = (φ1, φ2, φ3), φj ∈ Υ ; φj 	= cφk, 1 ≤ k, l ≤ 3, c ∈ R}

が存在する．任意の正の実数R 	= 1に対し，

σ1 = 2n + 2 + logR

(
T1[φR] + T2[φR] − T3[φR]

T1[φ] + T2[φ] − T3[φ]

)
,

σ2 = 2n + 2 + logR

(
T2[φR] + T3[φR] − T1[φR]

T2[φ] + T3[φ] − T1[φ]

)
,

σ3 = 2n + 2 + logR

(
T3[φR] + T1[φR] − T2[φR]

T3[φ] + T1[φ] − T2[φ]

)
,

ここでφR(x) = φ(Rx)であり，さらに

λ1 =
1

2(a1 − b1)
(T1[φ] + T2[φ] − T3[φ]),

λ2 =
1

2(a2 − b2)
(T2[φ] + T3[φ] − T1[φ]),

λ3 =
1

2(a3 − b3)
(T3[φ] + T1[φ] − T2[φ])
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が成り立つ．ここで，

a1 =

∫
R

∫
Rn

(|x|−σ1 ∗ |U1(·, t)|2)(x)|U2(x, t)|2dxdt,

a2 =

∫
R

∫
Rn

(|x|−σ2 ∗ |U2(·, t)|2)(x)|U3(x, t)|2dxdt,

a3 =

∫
R

∫
Rn

(|x|−σ3 ∗ |U3(·, t)|2)(x)|U1(x, t)|2dxdt,

b1 =

∫
R

∫
Rn

(|x|−σ1 ∗ U1(·, t)U2(·, t))(x)U1(x, t)U2(x, t)dxdt,

b2 =

∫
R

∫
Rn

(|x|−σ2 ∗ U2(·, t)U3(·, t))(x)U2(x, t)U3(x, t)dxdt,

b3 =

∫
R

∫
Rn

(|x|−σ3 ∗ U1(·, t)U3(·, t))(x)U1(x, t)U3(x, t)dxdt

である．

注意 1. 粒子が 4個以上の場合，同様の公式を得ることは難しい．なぜなら，問題
で既知関数としているものは {Sj(φ)(x), φj(x)}, 1 ≤ j < k ≤ N であり，その数は
N 個である．一方未知関数は vjkであり，その数は nC2 = n(n − 1)/2個となるた
め与えられた関数より未知の関数の方が多くなっているためである．粒子が 3個
の場合だけ既知関数の数と未知関数の数が等しくなっているのがこの問題の特徴
である．
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3 今後の展開
本研究で粒子が 3個の場合は相互作用力を散乱データから決定できることがわ

かった．今後の展開は次のようになる．

• 相互作用力だけでなく全粒子に働くポテンシャルも散乱データから決定でき
るかを解析する．

• 本研究では遠方で十分早く減衰するような相互作用力しか考察しなかったが，
クーロン力に代表されるようなもっとゆっくり減衰する相互作用力に対して
も散乱データから決定できるかを解析する．

• ハートリーの近似法以外の方法で得られる方程式に対して，本研究で得られ
た公式の導出法が応用できるかを検討してゆく．
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